
The Uncanny Valley of Computable
Contracts: Assessing Controlled Natural

Languages for Computable Contracts

Florian Idelberger∗

Abstract

Automated legal relationships of one form or another are the future. One does not have to listen to legal

tech enthusiasts to come to this conclusion. In some limited settings, such automated legal relations

are already here. These embedded, automated legal relations can be as seemingly innocuous as a social

media app that implicitly encodes its privacy policy within its computer code. One avenue to make

these relations more accessible is the combination of controlled natural languages (CNLs, languages

based on existing languages such as English but more restrictive) and programming languages, creating a

CNL that reads like (for example) English but can be used to create executable computable contracts.

These work by reducing the complexity of the natural language to a manageable size by only allowing

a limited set of syntax and semantics. While CNLs are more precise and more suitable for such a task

than machine-learning-based natural language processing, they also have limitations, especially in their

inherently limited complexity and when learning and writing them. This contribution sketches the

historical development of controlled natural languages and their relation to programming languages and

then assesses how valuable CNLs are for computable contracts. In this process, I describe the specific

property of CNLs, namely, that they are often easy to read but hard to master, referring to the ‘Uncanny

Valley of Computable Contracts’ by way of analogy to the hypothesised phenomenon described for

human reactions to humanoid androids.

Keywords: computable contracts, controlled natural language, contract automation, human machine

interface, AI and Law

Replier: Emma Tosch • Northeastern University, e.tosch@northeastern.edu.

Journal of Cross-disciplinary Research in Computational Law

© 2025 Florian Idelberger

DOI: pending

Licensed under a Creative Commons BY-NC 4.0 license

www.journalcrcl.org

∗ Postdoctoral Researcher, Center for Applied Legal Research, Karlsruhe Institute of Technology and Researcher at FIZ-Karlsruhe

(Leibniz Institute for Information Infrastructure), florian.idelberger@kit.edu.

mailto:e.tosch@northeastern.edu
https://creativecommons.org/licenses/by-nc/4.0/
https://journalcrcl.org
mailto:florian.idelberger@kit.edu
https://journalcrcl.org

CRCL volume 2 issue 1 • CRCL22: Computational ‘Law’ on Edge 2025

Introduction

In this paper, I present evidence for the overarching prob-

lems that CNLs (Controlled Natural Languages) targeting

legal applications face when trying to combine human

and machine accessibility. These problems make CNLs

hard to learn and write without extensive help, which

inventors often fail to provide or only develop as an af-

terthought. This phenomenon leads to CNLs that read like

natural language but are hard to learn, write and master;

the more so, the harder they are to distinguish from a nat-

ural language without being equal. As a result, compared

with general programming languages, data representation

methods, and graphical ‘no-code’ interfaces, the usage

and acceptance of such CNLs are very low. I hypothe-

sise this low usage and acceptance is due to their unfor-

tunate in-between and uncanny nature, between natural

language and programming language. I named this phe-

nomenon the ‘uncanny valley’ of computable contracts

using CNLs, after the phenomenon described by Japanese

roboticist Masahiro Mori and later adopted in popular cul-

ture.1

Contract Automation, in one form or another, has existed

for decades, at its most straightforward in the form of stan-

dard form contracts.2 Thoughts about legal automation

have been around even longer.3 Programming languages

and restricted or outright invented languages for human

reception have also existed longer than legal automation.

So far, contract automation has frequently focused on doc-

ument automation or data analysis.4 Invented languages

often focus on internal logic or perceived improvements

over existing natural languages, seldom on accessibility,

and seldom on the legal domain.5 Programming languages

are currently at an impasse, where non-natural languages

are reasonably user-friendly but very unfamiliar to new

users. Most innovations focus on improving the compiler

and enforcing secure memory use (as an example) but not

on making programming languages more accessible.6 In

contract automation, there has been some recent work on

using CNLs to model a language for this limited domain.

Examples include Logical English,7 and Lexon,8 and simi-

lar attempts have been made by CodeX at Stanford.9 Other

comparisons of formalisms for the representation of law

or contracts have been written by Ma10 and Clack,11 for

example.

To explain my hypothesis and the name I chose, I selected

existing CNLs targeting contracts and law to provide exam-

ples for comparison that show evidence for the hypothesis.

This process is a qualitative evaluation of those languages

through experimentation and usage, allowing me to pro-

vide much more detailed examples and empathetic com-

mentary than with a survey or an empirical evaluation

without usage.

Methodology

In this paper, I will describe the relationship between CNLs

and computable contracts, and the hypothesis of the ‘un-

canny valley of computable contracts’, sketched above, in

more detail based on historical developments and litera-

ture.

To show the differences and similarities and to elicit an

intuitive understanding in the reader of what these CNLs

are capable of (and what they are not capable of), I use

observational methodology. This method is well estab-

lished in sociology and used there when looking at ‘law

1 Masahiro Mori, Karl F MacDorman, and Norri Kageki, ‘The Uncanny Valley’ (2012) 19(2) IEEE Robotics & Automation Magazine 98.
2 Meng Wong, ‘Computable contracts: From Academia to industry’ (2018) 2 Rechtshandbuch Legal Tech 315.
3 Louis O Kelso, ‘Does the Law Need a Technological Revolution’ (1945) 18 Rocky Mountain Law Review 378.
4 Wong (n 2) 212.
5 Arika Okrent, In the land of invented languages: Adventures in linguistic creativity, madness, and genius (Spiegel & Grau Trade Paperbacks 2010).
6 Examples of innovation in that domain are for example the Rust and Go programming languages.
7 Robert Kowalski and Akber Datoo, ‘Logical English meets legal English for swaps and derivatives’ (2022) 30(2) Artificial Intelligence and Law 163.
8 Henning Diedrich, Lexon: Digital Contracts (Wildfire Publishing 2019).
9 Michael Gnesereth, ‘Computable Contracts Project’ (2015) 〈http://compk.stanford.edu/〉.
10 Megan Ma, ‘Writing in Sign: Code as the Next Contract Language?’ (2020) Release 1.0 MIT Computational Law Report; Megan Ma and others,

‘Deconstructing Legal Text: Object-Oriented Design in Legal Adjudication’ (2020) Release 1.0 MIT Computational Law Report.
11 Christopher D Clack, ‘Languages for smart and computable contracts’ (2021) 〈https://arxiv.org/pdf/2104.03764〉.

2

http://compk.stanford.edu/
https://arxiv.org/pdf/2104.03764

CRCL volume 2 issue 1 • CRCL22: Computational ‘Law’ on Edge 2025

in practice’ as opposed to the law in an abstract way.12 In

a different way, it was also often employed by Bruno La-

tour when describing people and their work, machines,

or other contexts that he wrote about as ‘the observer’,

keenly aware of all intermediate steps and assumptions,

even cautioning against logic as a reliable foundation.13

Although CNLs are far removed from legal practice, the

methodology is still helpful as CNLs (considered as a tech-

nology) are comparable in their practical application, as in

Kuhn’s survey.14

The only difference in the present paper is that an ob-

server observes technological systems (artificial languages)

through usage instead of participants. Because of these

differences, I describe it as an interdisciplinary socio-

technical (and legal) approach, as it uses a sociological

method on technological systems that are applied to law.

That said, this method is only second best to each reader

trying the languages out by themselves, which, after some

time, would evoke an intuitive understanding (or misun-

derstanding) much more prominently. For the purpose

of this paper, I assume it is sufficient for me to have ap-

plied the CNLs and then to tell the reader about it. This

tale is sufficient to help get knowledge about these lan-

guages from their respective niches into broader research

communities.

The observation is backed by manual usage of each of

these systems. This observation involved creating an ex-

ample software evaluation agreement in Attempto Con-

trolled English (ACE)15 and Lexon16 for my thesis, creating

test agreements for Logical English, and referring to lit-

erature and discussion for L4 and Catala.17 Together, the

hypothesis of the ‘Uncanny Valley’ and the examples of

computable contracts using CNLs can give a new perspec-

tive and new opportunities for computable contracts as

an example of computable law. For the present paper,

the observations have been reduced from those made in

the thesis.18 There, I created a software evaluation license

in several formalisms and compared them by using and

observing them. In this previous study, formalisms were

assessed based on the PENS criteria developed by Kuhn for

his survey on CNLs19 and a qualitative assessment of the

capabilities of various formalisms for representing com-

putable contracts, based on comparing the capabilities

for representing contractual content, the potential for au-

tomation, the representation of the contractual process

and subsequent business impact, as well as the aesthetics

of contracts. To achieve a more reproducible framework

for assessment, in future work, the criteria for assessment

should be made more stringent and formalised, similar

to the PENS system, where each formalism is assessed in

precision, expressiveness, naturalness, and simplicity on

a scale from 1 to 5. Due to time and scope constraints

however, this is not possible within this paper.

This system was not used here, but a follow-up study could

also observe the usage of these technologies by practition-

ers. This evaluation could take the form of interviews or

hands-on sessions with different groups of people. Groups

could, for example, consist of lawyers, judges, legal aca-

demics, and laypersons. Such a study would, however, re-

quire an enormous amount of preparation and resources

to be valuable and of sufficient size. Thus, the current ob-

servation of CNLs in use is inherently more subjective but

informed by the PENS scale and the qualitative evaluation

of the additional evaluation factors.

Structure

In order to have a common frame of reference, the concept

of computable contracts, as used in this paper, is described

12 Marc Simon Thomas, ‘Teaching Sociolegal Research Methodology: Participant Observation: Special Issue on Active Learning and Teaching in Legal

Education’ (2019) 14(14) Law & Method.
13 Graham Harman, ‘The importance of Bruno Latour for philosophy’ (2007) 13(1) Cultural studies review 31.
14 Tobias Kuhn, ‘A survey and classification of controlled natural languages’ (2014) 40(1) Computational linguistics 121.
15 Florian Idelberger, ‘step21/computable-contracts: Turing - Cleanroom Release’ (Zenodo July 2022) 〈https://doi.org/10.5281/zenodo.6877324〉.
16 Because it was uncertain when or if Lexon would be made available publicly and because it was thus uncertain whether reviewers and readers could

check the Lexon based system and results, I did not include the Lexon version in the thesis.
17 See the discussion of L4 and Catala below.
18 Florian Idelberger, ‘The Uncanny Valley of Computable Contracts: Analysis of Computable Contract Formalisms with a Focus towards Controlled

Natural Languages’ (PhD thesis, European University Institute 2022) (not yet public, available upon request from the author).
19 Kuhn, ‘A survey and classification of controlled natural languages’ (n 14).

3

https://doi.org/10.5281/zenodo.6877324

CRCL volume 2 issue 1 • CRCL22: Computational ‘Law’ on Edge 2025

after this introduction. Then, the historical background of

invented and controlled languages is traced via glimpses

into the past, which shows that much of what is present

and problematic in current CNLs is hardly new. Thereafter,

I present some general remarks on the syntax, semantics,

and logic of CNLs; whereafter, I present one general CNL

(Attempto Controlled English), two that specifically target

contracts (Logical English and Lexon, both at least initially

mainly targeted contracts) and one that focuses more on

law with L4. For comparison with non-CNLs targeting law,

Catala is described as a programming language specifically

for law. In the end, the concept of the ‘Uncanny Valley’ of

CNLs for computable contracts is presented and is anal-

ysed and extrapolated in more detail. Specifically, I focus

on the usage of CNLs as an interface and the meaning of

CNLs as legalism.

The present paper traces separate current and historical

developments of invented and controlled languages which

were intended to reduce ambiguity and improve accessi-

bility for humans and machines. This process concludes

that all CNLs for law have problems in terms of accessi-

bility, intuitive logic/understanding, and therefore learn-

ing, and often also with expressivity due to their restric-

tive rules. These flaws confine their potential usage to

very limited circumstances or as a stop-gap measure right

now.

Contracts

A contract is an agreement between one or more parties,

for example, regarding a specific sale, which then results in

an obligation to perform delivery and make payment. Un-

less otherwise specified by law, such as is often the case for

real estate transactions, contracts can be in any form. Con-

tracts are generally used to record business transactions

and personal agreements.20 They do not only have a legal

and a business function, however, but also a social func-

tion, independent of enforcement and thus independent

of computability. This social function exists whether con-

sidering computable contracts or non-computable ones.

For natural language contracts, socio-legal scholars such

as Macneil characterised this social function and func-

tioning as relational contracts, where content matters less,

and the relationship between the parties is the most im-

portant.21 In other terms, Allen described the contractual

stack, where, in the case of computable contracts, sepa-

rate layers above the code or contract text might specify

intent, offering default interpretations that might be relied

on in dispute scenarios.22 A graphical interface could be

an additional layer in this model. In many cases, human

oversight or, following Macneil,23 the relational aspect of

contracts is still necessary.

Computable Contracts

Various terms are used in the literature on ‘computable’

contracts depending on the author and their background.

Throughout this paper, I will use the term ‘computable

contract’, first established by Harry Surden in 2012. The

purpose of this paper is not to discuss terminology, so it

suffices to say that I find this term is the least fraught with

other connotations, such as ideology or a specific technol-

ogy (such as smart contracts), while at the same time, it is

not too vague (such as e-contract or algorithmic contract).

Surden describes his computable contracts as ‘data-based’

contracts, and for any computable contract, this is a nec-

essary foundation, as data is irreplaceable for any proper

computable contract.24

The usage of computable contracts is most often advo-

cated for due to cost savings on transaction costs through

20 Giesela Rühl, ‘Smart (Legal) Contracts, or: Which (Contract) Law for Smart Contracts?’ in Benedetta Cappiello and Gherardo Carullo (eds), Blockchain,

Law and Governance (Springer International Publishing 2021).
21 Ian R Macneil, ‘Reflections on relational contract’ [1985] (H. 4) Zeitschrift Für Die Gesamte Staatswissenschaft/Journal of Institutional and Theoretical

Economics 541.
22 Jason G Allen, ‘Wrapped and stacked:‘smart contracts’ and the interaction of natural and formal language’ (2018) 14(4) European Review of Contract

Law 307.
23 Macneil (n 21).
24 Harry Surden, ‘Computable Contracts’ (2012) 46 University of California Davis Law Review 629, 639.

4

CRCL volume 2 issue 1 • CRCL22: Computational ‘Law’ on Edge 2025

streamlined processes and getting rid of mundane tasks

such as form filling.25 Other factors in advocating for

their usage are the improved and facilitated interaction

between human and machine actors, especially when us-

ing a CNL.26 This facilitation of interaction comes about

through facilitating access to users and machines while

making explicit legal or business rules that would other-

wise only be implicit in the application code or in hard-

to-access electronic or paper documents. Surden further

describes the role of computable contracts as an ex-ante

prima-facie assessment, in opposition to an ex-post review

of a legal contract when problems occur.27

Generally, computable contracts can be applied where suf-

ficient data is available for their performance and if they

are sufficiently discrete (as opposed to relational). Existing

work by Surden and the guidance document, ‘Developing

a Legal Specification Protocol,’ for computable contracts

from CodeX both focus on specific domains as primary tar-

gets for computable contracts, specifically financial con-

tracts and insurance.28

Historical Background On
Languages

Historically, inventive minds worldwide felt the urge to

invent their own language.29 This process either involved

inventing everything, including sounds and characters,

or at least partially basing the new language on existing

languages, such as sourcing word parts from one or many

existing languages.30

The inventors of these languages had various reasons

and methods for their endeavours. Up to the 19th and

into the 20th century, the belief that a better language

could lead to world peace, enlighten feeble human minds,

help connect with God or improve language learning was

widespread.31 The last-mentioned was the most realistic

and is still relied on as a motivation today in Basic English

and other subsets for other languages, such as Leichte

Sprache for simpler German and Français Fondamental

for easier French.32

Other invented languages that still survive today are those

that found a particular community that practices and en-

joys them. The most well-known of these is Esperanto,

which according to Okrent’s research, is the most prolific

and the only invented language that managed to attract

a certain community size and a corresponding culture in

that language.33

Today’s invented languages in the form of CNLs have much

more modest and practical objectives, but nonetheless,

similarities can be observed. Mainly, both past and present

invented or controlled languages struggled with making

their inventions accessible to new learners and had diffi-

culty bridging the gap of keeping their purpose (such as a

strict logic or no ambiguity) while also getting interested

parties to use the language, and at the same time writing

down language grammar concisely and intuitively.34 These

languages that came before modern CNLs are not direct

predecessors to modern CNLs, but they still serve as an

illustration that not all problems are new or confined to

them.

25 Surden (n 24) 688–689, 696; Wong (n 2) 213, 221.
26 Surden (n 24) 694; Inari Listenmaa and others, ‘An NLG pipeline for a legal expert system: a work in progress’ (2021) 〈https://arxiv.org/abs/2107.02421〉.
27 Surden (n 24) 678, 679.
28 Oliver R Goodenough, ‘Developing a Legal Specification Protocol: Technological Considerations and Requirements’ (2019) 〈https://law.stanford.

edu/publications/developing-a-legal-specification-protocol-technological-considerations-and-requirements/〉; Surden (n 24).
29 Goodenough (n 28); Surden (n 24).
30 Okrent (n 5) 15, 110–115.
31 ibid 114, 122.
32 Gudrun Kellermann, ‘Leichte und Einfache Sprache–Versuch einer Definition’ (2014) 64(9-11) Aus Politik und Zeitgeschichte 7; Dominique Klinger

and Georges Daniel Véronique, ‘La grammaire du Français fondamental: Interrogations historiques et didactiques’ [2006] (36) Documents pour

l’histoire du français langue étrangère ou seconde.
33 Okrent (n 5) 51, 57, 62.
34 ibid 68, 96, 100, 125.

5

https://arxiv.org/abs/2107.02421
https://law.stanford.edu/publications/developing-a-legal-specification-protocol-technological-considerations-and-requirements/
https://law.stanford.edu/publications/developing-a-legal-specification-protocol-technological-considerations-and-requirements/

CRCL volume 2 issue 1 • CRCL22: Computational ‘Law’ on Edge 2025

Current Controlled Natural
Languages

Currently, there are several CNLs targeting legal contracts

or law, which are at the same time also active in the sense

that they are usable, reasonably present in literature, and

under active development. For the present paper, I se-

lected Attempto Controlled English (ACE),35 Logical En-

glish,36 Lexon,37 L438 and Catala.39 ACE here serves as an

example of a very heavily developed and researched CNL,

even though it does not directly target contracts or the law.

Logical English and Lexon were selected as CNLs that di-

rectly target contracts and law. Catala, on the other hand,

was selected because it serves as an example of a program-

ming language used in the domain of law that does not try

to emulate natural language via a CNL.

Syntax and Semantics of Controlled Natural
Languages

In languages of any kind, syntax describes the structure

and the rules of the language, and semantics describe

its meaning. These terms and general concepts are used

universally, whether when discussing natural languages,

programming languages, or other formal or artificial lan-

guages such as CNLs.

In his survey of CNLs, Kuhn gives a longer definition of

CNLs, stating that they are based on one natural language,

have restrictions in vocabulary, syntax, and semantics but

retain some natural language properties for ease of under-

standing. In addition, he says whereas natural languages

in active use evolve organically, CNLs are explicitly con-

structed and invented.40 Based on these properties and

further observations, he developed the PENS scale to com-

pare CNLs.41 This scale measures precision, expressivity,

naturalness, and simplicity. Each criterion uses easily eval-

uated descriptions; for example, simplicity (or complexity)

is measured in the length of pages it takes for a full descrip-

tion of the language without the vocabulary. For example,

in comparison with a natural language, he assigns English

the score P1E5N5S1, which features a low precision (P1) but

high expressivity and high naturalness (N5). In compari-

son, propositional logic has high precision but low expres-

sivity with P5E1N1S5. Propositional logic also features the

lowest naturalness and high simplicity, whereas English

has low simplicity, i.e., high complexity.42 The CNLs dis-

cussed here fall somewhere in between, likely similar to

COBOL (a programming language) with P5E2N2S3, though

with higher naturalness.

On a related note, Wyner et al. compiled a report on CNLs

that listed necessary and possible considerations for de-

signing and evaluating CNLs, where they distinguish be-

tween generic properties, high-level properties, design

properties, and linguistic properties.43 On a generic level,

they focus on the intended user base, intended purposes,

and domain specificity. The ease of reading, writing, ease

of learning, and whether the CNL is predictable and un-

ambiguous are also stressed as important factors.44

Logic

All CNLs here have the following properties in common

when being translated to programming languages – they

have a simple logic model that is mostly reliant on Prolog,

as in the case of Logical English, or on the underlying pro-

35 Norbert E Fuchs, Uta Schwertel, and Rolf Schwitter, Attempto Controlled English (ACE) - Language Manual 99.03 (techspace rep, Institut für

Informatik der Universität Zürich 1999).
36 Robert Kowalski, Jacinto Dávila, and M Calejo, ‘Logical English for legal applications’ in XAIF, Virtual Workshop on Explainable AI in Finance (2021).
37 Lexon Foundation, ‘Lexon-Rust’ (2020) 〈https://gitlab.com/lexon-foundation/lexon-rust〉.
38 Listenmaa and others (n 26) 1, 4.
39 Denis Merigoux, Nicolas Chataing, and Jonathan Protzenko, ‘Catala: a programming language for the law’ (2021) 5(ICFP) Proceedings of the ACM on

Programming Languages 1.
40 Kuhn, ‘A survey and classification of controlled natural languages’ (n 14) 123.
41 ibid 125–132.
42 ibid 139.
43 Adam Wyner and others, ‘On controlled natural languages: Properties and prospects’ in Norbert E Fuchs (ed), International workshop on controlled

natural language (2009) 3.
44 ibid 4.

6

https://gitlab.com/lexon-foundation/lexon-rust

CRCL volume 2 issue 1 • CRCL22: Computational ‘Law’ on Edge 2025

gramming language, in the case of Lexon. Both use variants

of first-order logic. This is sufficient for many program-

ming languages but not for obligations and permissions

such as in deontic logic.

Many functions of computable contracts which conform

to Surden’s conception and are capable of being imple-

mented as a Deterministic Finite Automaton (DFA) as de-

scribed by Goodenough, are sufficiently represented in

code by if-then logic.45 If-then logic is a key feature of

programming languages. In logic theory it is an aspect

of first-order logic. First-order logic is often also called

predicate logic and can be described as an extension of

propositional logic. Where propositional logic consists of

statements and their relations, first-order logic adds vari-

ables, quantifiers, and more complex relations. First-order

logic distinguishes itself from higher-order logic, which

for example, can also have quantifiers over functions and

predicates.

CNLs targeting Contracts

Attempto Controlled English (ACE) ACE is a general-

purpose CNL developed from 1995 onwards at the Univer-

sity of Zürich by Norbert E. Fuchs and colleagues. From

there, development diversified into specific application

domains and tooling.46

Examples of this are uses for knowledge representation,

formal reasoning, rules systems with AceRules specifi-

cally targeting rule-setting and APE (Attempto Parsing En-

gine).47 APE is the main program that makes ACE accessi-

ble by checking its correctness on loading a file and option-

ally transforming it to other ontological representations or

paraphrasing the text. In my experiments, I mainly used

the paraphrasing functionality to test if the entered ACE

text matched what it was meant to express after transfor-

mation and ‘understanding’ by the program.

ACE is a subset of English but has a limited vocabulary

(though it is user-extendable), and only very specific gram-

mar constructs are permitted when writing ACE. Sentences

consist of a subject, verb, complements, and optionally

adjuncts. These are terms from linguistics, where a com-

plement is a part completing a sentence, and an adjunct is

an optional part of a sentence. This part can either be an

object, a modifier, or a similar addition.

Like many formal CNLs, ACE only supports simple present,

and it always needs an article or a quantification, even

if natural English would not. In addition, ‘this’, ‘these’

and any word containing ‘any’ is prohibited.48 Further-

more, according to its manual, ACE only supports active

voice49 and expressions in the third person singular. It does

not support imperatives, plural noun phrases modal logic

or deontic logic verbs such as ‘must’, ‘shall’ and ‘may’.50

Some of these restrictions, such as plural noun phrases, are

necessary for disambiguation. If the plural noun phrase

‘noun phrases’ were used, it would be difficult (or maybe

impossible) to have a rule on what this referred to. The

phrase could refer to a collection of phrases, at least one,

or to specific instances of noun phrases mentioned previ-

ously. This explanation shows that there are good reasons

why these restrictions are in place – but at the same time,

they also highlight the deceptive similarity to natural lan-

guage.51

In terms of sentences supported, ACE supports not only

simple sentences but also composite sentences, such as

the special constructs of ‘if’ and ‘of’ sentences. Of these,

for contracts or programming constructs, ‘if-sentences’

are the most important due to their propensity for rules.52

45 Surden (n 24) 647, 665; Mark D Flood and Oliver R Goodenough, ‘Contract as automaton: Representing a simple financial agreement in computational

form’ (2022) 30(3) Artificial Intelligence and Law 391.
46 Fuchs, Schwertel, and Schwitter (n 35).
47 https://github.com/Attempto/APE.
48 Fuchs, Schwertel, and Schwitter (n 35) 26; APE authors, ‘APE - Illegal Words’ (2021) 〈https://github.com/Attempto/APE/blob/61c9b264dd/prolog/

lexicon/illegalwords.pl〉.
49 Fuchs, Schwertel, and Schwitter (n 35) 2, 3.
50 A noun phrase is a phrase that has a noun at its head and has the same function as a noun.
51 Adam Wyner, ‘From the Language of Legislation to Executable Logic Programs’ in Michał Araszkiewicz and Krzysztof Płeszka (eds), Logic in the

Theory and Practice of Lawmaking (Springer International Publishing 2015) 420–423.
52 Fuchs, Schwertel, and Schwitter (n 35) 25.

7

https://github.com/Attempto/APE
https://github.com/Attempto/APE/blob/61c9b264dd/prolog/lexicon/illegalwords.pl
https://github.com/Attempto/APE/blob/61c9b264dd/prolog/lexicon/illegalwords.pl

CRCL volume 2 issue 1 • CRCL22: Computational ‘Law’ on Edge 2025

Lastly, ACE also supports query sentences; examples are

yes/no questions and questions that start with the query

words ‘who’ and ‘what’.53

The ACE manual is much more extensive, but the rules

presented here are meant to give an overview from a user

perspective.54 While I assume it is possible to condense

the manual, these examples of the most basic rules give

a glimpse of what is necessary for a language such as

ACE to avoid ambiguity while still reading like natural En-

glish.

While there are attempts to formalise the ACE grammar in

new ways, such as by providing an abstract grammar, these

help with studying and research but not with increasing

accessibility and general usage.55 Hoefler, for example, de-

scribes an abstract grammar based on the software imple-

mentation of ACE, the Attempto Parsing Engine (APE), and

uses a grammar syntax closely mirroring Definite Clause

Grammars (DCGs) in the logic programming language Pro-

log.56

For CNLs, domain knowledge is one feature that can make

them more accessible so that some of the supported gram-

mar and vocabulary are derived and potentially can be

intuited by a user based on what they know about the do-

main in question.57 Due to its generality, ACE does not fea-

ture domain grounding. The specific usage of ACE could

provide such grounding or adapt in other ways, as in the

case of AceRules, which adapted ACE for rules as code

(though it does not use this term) and allowed usage of

different semantic models depending on the envisaged

application.58

Hoefler says, ‘It has become evident that a controlled nat-

ural language like ACE can combine the advantages of

natural and formal languages ... [and] contribute to ... a

successful interaction and communication between do-

main specialists and software engineers.’59 So far, Hoefler’s

positive findings have not come to fruition, as evidenced

by lack of usage in addition to my observations on us-

age.

Figure 1 below contains a contract clause from an ACE

example derived for my thesis, which compared imple-

mentations of a software evaluation license in different

formalisms.60 ACE is the most natural of all currently us-

able CNLs as it is most closely modelled after natural lan-

guage. Still, many often-used phrases and constructs, such

as the past tense and passive voice, are not supported.

These restrictions do not have to be a hindrance, as the re-

sults can work or be adapted to work in many cases. Still, in

an overall text, it can lead to an unnatural flow of text.61 In

ACE, the notation ‘n:’ can be used to designate additional

words directly inside a text (in this case, a noun), whereas

otherwise, vocabulary is defined in separate files.

In my experiments, I then used APE to process the ACE text

and derive a paraphrased version of the text. On careful

reading, this shows whether the text is accurately repre-

sented in ACE because if it is not, the paraphrased version

will contain errors that distort the intended meaning in

many cases. This process shows most errors but still re-

quires a careful reading of the results. From the example

below, it can be deduced that paraphrasing also results in

less natural text, which harkens back to ACE’s Prolog roots

regarding the logic and argumentation used.

Because ACE aims for high naturalness, it has considerable

complexity. This makes it a fascinating language and ACE

could be an excellent way to design accessible and usable

computable contracts. However, it was not designed to be

53 Fuchs, Schwertel, and Schwitter (n 35) 34.
54 Version 3.0 of the language manual has 81 pages.
55 Stefan Hoefler, The Syntax of Attempto Controlled English: An Abstract Grammar for ACE 4.0 (techspace rep, Institut für Informatik der Universität

Zürich 2004).
56 ibid 2.
57 Wyner and others (n 43) 3.
58 Tobias Kuhn, ‘Acerules: Executing rules in controlled natural language’ in Massimo Marchiori, Jeff Z Pan, and Christian de Sainte Marie (eds),

International Conference on Web Reasoning and Rule Systems (2007).
59 Hoefler (n 55) 18.
60 Idelberger, ‘The Uncanny Valley of Computable Contracts: Analysis of Computable Contract Formalisms with a Focus towards Controlled Natural

Languages’ (n 18).
61 Kuhn, ‘A survey and classification of controlled natural languages’ (n 14) 138.

8

CRCL volume 2 issue 1 • CRCL22: Computational ‘Law’ on Edge 2025

/* Article 3 */

The Licensee and a n:sublicensee may not publish at least
one comment that is not approved by the Licensor.
The approval of at least one comment needs to be given before
the publication. If the Licensee publishes at least one comment
without the approval of the Licensor then the Licensee must remove
the comment within 24 h.

Figure 1: An example clause in ACE depicting a licensing clause

It is false that it is admissible that they publish at least
1 comment X1 and that it is false that Licensor approves
the comment X1. If Licensee publishes at least 1 comment X1
without an approval of Licensor then it is necessary that
Licensee removes the comment X1 within 24 h.

Figure 2: The paraphrased ACE example

executable or data-based, as all output formats focus on

knowledge representation or reasoning about facts, similar

to Prolog.62 In his work, Wyner came to a similar conclu-

sion, describing the limitations of ACE as its strength but

also seeing its limitations for complex domains such as

the law.63 With enough modifications, ACE could be modi-

fied to be an executable language, but this would probably

mean additional restrictions and rules would need to be

added. The specific modifications necessary depend on

the application domain.64

Logical English Logical English is the brainchild of logi-

cian Robert Kowalski, who has been influential in applying

logical reasoning concepts to specific domains, especially

logic programming and the law65 Logical English is based

on the logic-programming language Prolog, which Kowal-

ski helped grow. The roots of Kowalski’s work on the com-

bination of logic programming and natural language go

back to the 1990s.66 In the past, he used Prolog to model

the British Nationality Act and worked on the basics of

logic programming.67

The peculiarity of Logical English is that it is described as

‘syntactic sugar’ on top of Prolog.68 This thin layer has the

effect that it is very limited in the grammatical structures

that it supports, even more so than ACE. In this context,

‘support’ means that it can differentiate or even under-

stand them. In Logical English, it is possible to use many

kinds of constructs if templates define them, but they will

only make it easier for humans to recognise the constructs,

though not in the way computers understand them. At

the same time, Logical English will feel familiar to Prolog

programmers, as the layer between the CNL and the Prolog

programming language is relatively thin.

Logical English at first targeted contracts (and still uses

the domain and GitHub organisation LogicalContracts),

but by now, it has a broader focus that includes law and

regulation.69

62 APE authors (n 48).
63 Wyner and others (n 43) 424.
64 ibid.
65 Kowalski, Dávila, and Calejo (n 36); Kowalski and Datoo (n 7).
66 Robert Kowalski, ‘English as a logic programming language’ (1990) 8(2) New Generation Computing 91.
67 Marek J Sergot and others, ‘The British Nationality Act as a logic program’ (1986) 29(5) Communications of the ACM 370; Robert Kowalski, ‘Predicate

logic as programming language’ in IFIP congress (1974) vol 74.
68 Kowalski, Dávila, and Calejo (n 36) 1.
69 LogicalContracts authors, ‘Logical English - Knowledge Base - Citizenship’ (2022) 〈https://github.com/LogicalContracts/LogicalEnglish/blob/

2bc845870afa3b8fc57ac1e5fd0cd7ffab13a106/kb/0%5C_citizenship.pl〉.

9

https://github.com/LogicalContracts/LogicalEnglish/blob/2bc845870afa3b8fc57ac1e5fd0cd7ffab13a106/kb/0%5C_citizenship.pl
https://github.com/LogicalContracts/LogicalEnglish/blob/2bc845870afa3b8fc57ac1e5fd0cd7ffab13a106/kb/0%5C_citizenship.pl

CRCL volume 2 issue 1 • CRCL22: Computational ‘Law’ on Edge 2025

en("the target language is: prolog.
the templates are:
the terms of *a contract* are met,
...
the knowledge base minicontract includes:
...
A contract C is a valid contract if
the contract C is signed by the service provider known as X.
scenario one is:
... The payment schedule is of type staggered payment schedule.
query one is:
which contract is a valid contract.

Figure 3: An example document structure for Logical English

Figure 3 below shows the current structure of a Logical

English document and an abbreviated example. First, the

templates section demonstrates that the structure of each

sentence must be defined as a template for the recognition

of any sentence.70 Asterisks denote defined variables. Then

the templates defined in the first section are instantiated

in the ‘knowledge base’ section, where they constitute the

actual rules. The next two important sections are scenarios

and queries, both of which can contain multiple different

items. A scenario is a specific set of circumstances defined

in addition to the knowledge base. As an example, when

someone is appointed to a position or a given variable is

either true or false, this can be set in a scenario. Queries are

questions that combine a question word, a variable, and

the sentence parts defined in templates and the knowl-

edge base. Queries and scenarios can then be combined to

‘answer’ questions, similar to how this would work in the

original Prolog.

This querying functionality is impressive. When using a

carefully constructed knowledge base in conjunction with

an appropriately phrased scenario and query, it answers

questions in a natural style and explains how it reached

its answer. This functionality is especially useful when

combined with a special ‘answer’ predicate that tries to ex-

plain an answer in CNL based on the text templates it finds

when looking for answers. For this feat, when looking for

answers, it repeats the parts (Prolog predicates) in reverse

order and turns them back into sentences.

The use of templates for each sentence exemplifies that

Logical English is ‘syntactic sugar’. Compared to other lan-

guages, it has only a few logic-based constructs, phrases,

and some math that are predefined and mapped to the un-

derlying Prolog. Everything else depends on user-defined

templates. In my view, for legal applications, this is a

strength and a weakness at the same time. It is a strength

because it allows for many natural-sounding sentences

without being restricted by pre-existing vocabulary or con-

structs. On the other hand, it requires all those sentences

to be predefined and might give a false sense of equiv-

alency to natural language if it is not apparent to a user

that the system distils the elaborate sentence they devised

down to a long, but still simple Prolog term of the form

a(b1, . . . , bN).

This distillation to the essentials can be seen in Figure 4

below. It depicts a Prolog term with two arguments from

the knowledge base above.

Overall, representing a contract in Logical English allows

users to capture many expressions for computable con-

tracts. If Logical English is paired with an additional system

for execution, it can also create computable rules similar

to smart contracts. It also is much more accessible than

70 Kowalski, Dávila, and Calejo (n 36) 1.
71 Thomas F Gordon, ‘Some problems with prolog as a knowledge representation language for legal expert systems’ (1987) 3(1) International Review of

Law, Computers & Technology 52, (as one example).

10

CRCL volume 2 issue 1 • CRCL22: Computational ‘Law’ on Edge 2025

the_terms_of(A_CONTRACT, are_met).

Figure 4: The rule from the Figure 3 above, translated into a Prolog compound term

Prolog, which was used a lot in the past for explorations of

computable law.71

Lexon Lexon is a CNL that targets contracts and was born

out of the renewed interest in contract automation that fol-

lowed the blockchain and smart contract hype from 2017

onward. Consequently, its first target language was Solid-

ity, a lower-level72 language used to write smart contracts

for certain blockchain systems.73 It is a domain-specific

language as it directly targets contracts and the law. When

targeting Solidity, it is grounded in certain primitives sup-

plied by the Solidity language and its underlying environ-

ment, which other languages, such as Logical English, do

not have.

The grammar of Lexon, while not overly complicated, is

hard to describe concisely. The basic document structure

follows the structure of a contract document.

In the example of Figure 5, the general structure of a Lexon

document is visible. The document is suited to the termi-

nology and look of a natural language contract by using a

readable header, a natural language preamble, and terms

such as ‘Terms’, ‘Contracts’, and ‘Clause(s)’. At the same

time, however, these structures are mapped onto the un-

derlying language in a specific way. This mapping is less

of a problem if the language is just used for prototyping,

such as in the case of Metafor,74 but since the languages

under analysis are meant to be computable directly, this

matters as users need to be aware of the limitations and

particularities of a particular output language.

In its original application, where Lexon targets Solidity, the

whole contract document maps onto a Solidity contract

instance, which in other programming languages might

be akin to a class in object-oriented programming. A class

in programming languages is a template to easily spawn

instantiations with common functions and base parame-

ters.

Then, the ‘TERMS’ section maps onto the constructor of

the smart contract. Each clause maps onto a function of

the contract. ‘CONTRACTS per’ allows for an instantiation

of a contract per user, for example. Also, before ‘TERMS’,

it is possible to define and assign entities outside of the

constructor, as in any Solidity program. For example, an

expression of ‘X is Y’ then assigns a type, and ‘X fixes
Z’ (or other verbs are also possible) then sets who may set

a value for a particular variable.

This format does make smart contracts written in Lexon

very easily readable at first glance. However, so far, it does

not work in reverse. As a result, it is currently not possi-

ble to translate Solidity smart contracts to Lexon, which

could be very useful. When Lexon is applied to smart con-

tracts and thus when translating to Solidity, the use of legal

or non-programming terms hides the fact that the CNL

is merely an interface for the underlying smart contract

language. This fact poses three major problems. One is

that, in principle, it still requires at least a non-negligible

familiarity with Solidity as a smart contract programming

language. Second, even if that familiarity exists, the CNL

does not allow for the fine-grained control that is nec-

essary in many cases, especially when dealing with high

value smart contracts and high complexity. Third, there

is no quick and easy way to determine if the output of a

certain translation does what it says in English or whether

this code is safe. To some degree, the latter two points can

be mitigated by hard-coding certain common cases and

prohibiting other constructs.

72 Referring to a blockchain system (Ethereum Virtual Machine) in this case, which uses its own bytecode.
73 Solidity Developers, ‘Ethereum/Solidity’ (2015) 〈https://github.com/ethereum/solidity〉.
74 Hugo Liu and Henry Lieberman, ‘Metafor: Visualizing stories as code’ in Proceedings of the 10th international conference on Intelligent user interfaces

(2005). This tool does not produce fully functional code, but code from natural language input, which can for example be used for brainstorming.
75 https://github.com/smucclaw/dsl.

11

https://github.com/ethereum/solidity
https://github.com/smucclaw/dsl

CRCL volume 2 issue 1 • CRCL22: Computational ‘Law’ on Edge 2025

LEX: Contract Name.
LEXON: 0.3.x
AUTHOR: Lex Lawyerperson
PREAMBLE: Explanation goes here.
TERMS:
"Licensor" is a person.
"Licensing Fee" is [an amount].
The Licensor fixes the Licensing Fee.
...
CONTRACTS per Some Name:
...
"Some Entity" is a person.
...
CLAUSE: Payment
The Licensee pays the Licensing Fee to the Licensor,
and pays the Breach Fee into escrow.
The License is therefore Paid.

Figure 5: An abbreviated example of a Lexon document

CNLs targeting Law and Regulation

L4 L4 is a language targeting law and regulation and is

currently under active development at Singapore Manage-

ment University by serial legal entrepreneur Meng Wong.75

It is a domain-specific language (DSL) but features an op-

tional CNL for natural language generation.76

This CNL part is built on top of Haskell and Grammati-

cal Framework (GF), a rule-based language framework to

map and translate between languages and its Resource

Grammar Library. GF is a software framework and toolset

written in Haskell, a functional, statically typed language.77

A big difference to Prolog, as used for ACE and Logical En-

glish, is the use of types, which are a core feature of GF.78

This approach results in a system much more oriented to-

wards specific types and categories that build on top of

each other. In my view, this can make a language more

accessible, which is also supported by the importance of

domain dependence, as identified by Wyner et al.79

It is, in principle, possible to retroactively build types into

a Prolog language, but in the cases under examination, this

was not done. In addition, L4 is much more than merely

‘syntactic sugar’. This sets some ground rules that make

certain rules and use cases easier, as the possibility to have

types of words is already built in through the programming

language types.

In addition to being built on top of GF, L4 uses GF’s Re-

source Grammar Library (RGL), which allows it to harness

the basic syntax and the foundations of word and sentence

construction from over 30 languages.80 Due to the capa-

bilities of GF in conjunction with the RGL, of all CNLs, L4

is the CNL that tries to capture the complexities of natural

languages most completely and is the most ambitious in

terms of grounding and scope.

76 Inari Listenmaa and others, ‘Towards CNL-Based Verbalization of Computational Contracts’ in Tobias Kuhn and others (eds), Proceedings of the

Seventh International Workshop on Controlled Natural Language (CNL 2020/21) (2023).
77 Aarne Ranta, Grammatical framework: Programming with multilingual grammars (vol 173, CSLI Publications, Center for the Study of Language and

Information Stanford 2011); Aarne Ranta and others, ‘Abstract syntax as interlingua: Scaling up the grammatical framework from controlled languages

to robust pipelines’ (2020) 46(2) Computational Linguistics 425.
78 Listenmaa and others (n 76) 2.
79 Wyner and others (n 43) 3.
80 Grammatical Framework, ‘GF Resource Grammar Library (RGL)’ (2008) 〈https://github.com/GrammaticalFramework/gf-rgl〉.

12

https://github.com/GrammaticalFramework/gf-rgl

CRCL volume 2 issue 1 • CRCL22: Computational ‘Law’ on Edge 2025

optional CNL descriptions
lexicon UnauthorizedSharingFees
@ "involves sharing fees with unauthorized persons" MayAcceptAppointment
@ "{LegalPractitioner} may accept an appointment in {Business}"

Figure 6: An example showing the complementary CNL used by L4, where it describes two different programming descriptors in more

detail. The example is from a paper by Listenmaa and colleagues (n 76), and used for illustrative purposes.

Figure 6 shows snippets of the CNL as attached to DSL

descriptors, describing the unauthorised sharing of fees

and whether a legal practitioner may accept an appoint-

ment. These parts are not used as a core language but as

an additional descriptor to describe or generate natural

language descriptions for rules written in the DSL itself.

This connection between DSL and CNL is a different take

on literate programming and making contract code acces-

sible.

Programming Languages targeting Law and
Regulation

The selection of the languages presented in this article is

partially based on the development activity, relevance and

novelty of those languages. Taking account of these fac-

tors, only Catala is listed here, but historically, there were

many more programming languages targeting law and reg-

ulation. In the rules-as-code movement, Python or other

general programming languages are also used for similar

purposes.81

Catala Catala is a recent development that foregoes CNLs

or natural language likeness for a programming language,

a domain-specific language that targets law and regula-

tion.82 A key feature of Catala is built-in support for literate

programming.83 This support means that it supports the

inclusion of the natural language version of a legal clause

above or below the computable clause, in a form of literate

programming. Jupyter Notebooks use the same technique

for data science.84

In terms of logic, it is described as using default logic as

opposed to predicate logic (also often known as first-order

logic). Predicate logic is, for example, used by Prolog,

which APE and Logical English use under the hood.

Default logic is similar to defeasible logic, which has often

been proposed in the Law and AI community as being well

suited to legal applications due to its ability to resolve con-

flicting rules and having exceptions and defaults.85 Default

logic has default rules in case no conditions apply. Accord-

ing to Antoniou, who compared both, defeasible logic is

directly deductive, and default logic is based on alternative

worldviews.86 While these both use different approaches,

the result is similar, and default logic, as used in Catala,

can be seen as an extension of earlier work in law and AI

on defeasible logic for legal applications.87

The example in Figure 7 shows a section of Catala from its

introductory paper.88 Based on this paper, Catala explic-

itly targets laws and regulations, and this is exemplified by

providing facilities to model the complexities and inter-

dependence of existing laws, such as the scope shown in

the example above and a wholly declarative nature allow-

81 Brenda Wallace, ‘When software and law are the same thing’ (2019) 〈https://2019.pycon-au.org/talks/when-software-and-law-are-the-same-thing〉;
Jason Morris, Rules as Code: How Technology May Change the Language in Which Legislation Is Written, and What It Might Mean for Lawyers of

Tomorrow, ‘ABATECHSHOW’ (2021); OpenFisca Aotearoa, ‘BetterRules’ (2022) 〈https://github.com/BetterRules/openfisca-aotearoa〉.
82 Merigoux, Chataing, and Protzenko (n 39); The Catala developers, ‘The Catala compiler and tooling’ (2020) 〈https://github.com/CatalaLang/catala〉.
83 Merigoux, Chataing, and Protzenko (n 39) 9.
84 Mary Beth Kery and others, ‘The story in the notebook: Exploratory data science using a literate programming tool’ in Proceedings of the 2018 CHI

conference on human factors in computing systems (2018).
85 Grigoris Antoniou and David Billington, ‘Relating defeasible and default logic’ in Australian Joint Conference on Artificial Intelligence (2001).
86 ibid.
87 Grigoris Antoniou and others, ‘Embedding defeasible logic into logic programming’ (2006) 6(6) Theory and Practice of Logic Programming 703.
88 Merigoux, Chataing, and Protzenko (n 39).
89 ibid 10.

13

https://2019.pycon-au.org/talks/when-software-and-law-are-the-same-thing
https://github.com/BetterRules/openfisca-aotearoa
https://github.com/CatalaLang/catala

CRCL volume 2 issue 1 • CRCL22: Computational ‘Law’ on Edge 2025

scope Section121SinglePerson:
rule requirements_ownership_met under condition

aggregate_periods_from_last_five_years of personal.property_ownership >= 730 day

Figure 7: A partial example describing US income tax legislation

ing for out-of-order computation as the law may require

due to interdependences.89

The Uncanny Valley

Generally, CNLs are easy to read and sometimes not distin-

guishable from a natural language (English in this case) but

are hard to write and master. During my research, I found

that this phenomenon was already known when writing

CNLs and is mentioned by Kowalski in the context of Logi-

cal English and by Kuhn more generally.90 However, with

these authors, it is not described from a legal perspective

and was not given any particular name.

I propose to call this phenomenon the ‘Uncanny Valley

of Computable Contracts’ when applied to computable

contracts. I use the term ‘Uncanny Valley’ as it reminds

me of the hypothesis of the same name used to describe

the human response to humanoid robots and virtual char-

acters. Specifically, Masahiro Mori, a Japanese roboticist,

hypothesised that – at a certain level of human-likeness

– people’s willingness to accept humanoid robots would

drop sharply (due to the robots appearing strange or ‘un-

canny’) and only increase again when they become almost

indistinguishable from humans. I hypothesise that a simi-

lar effect applies to learning and writing human-readable

and writeable computable contracts using CNLs, and by

extension, also to users’ acceptance of such CNLs. The

proliferation of the term ‘Uncanny Valley’ of computable

contracts should give more visibility in research and liter-

ature to this limitation, to the possibilities of computable

contracts featuring CNLs, and make the advantages and

limitations of CNLs as well as the Uncanny Valley hypoth-

esis as applied to computable contracts accessible to a

broader audience.

This hypothesised relationship is approximated in the

graph above. Acceptance and ease of use in writing a com-

putable contract increase with a rise in the likeness to nat-

ural (legal) language but fall deep into a ‘valley’ where this

increase fails, only increasing again when almost like a

natural language. Deepest in the valley are general CNLs,

with domain-specific CNLs on the valley’s cliffs. Despite

domain-specific languages being ‘in the valley’, they are

also the best bet to get out of it. They are ‘the best bet’

because it is more feasible to write an easily readable and

writeable CNL that is intuitively grounded if it is limited

to a specific domain. Formalisms and CNLs are placed

further to the right on the slope up to the valley as they get

more and more ‘natural’ as evidenced by the possibility

to use natural words and sentences and higher up as the

hypothesised acceptance by laymen increases. Inside the

valley, I differentiate between general and domain-specific

CNLs, but they are not placed anywhere specifically, as

the differences are too minute in terms of this hypothesis.

The shape is also only approximated. More to the right

are formalisms that support more elements of natural lan-

guage.

Similar to this graph, the original hypothesis concerning

the response to humanoid androids was merely a hypoth-

esis (albeit with reasoned argumentation). Later on, the

‘Uncanny Valley’ hypothesis proposed by Mori was empir-

ically tested and confirmed by Mathur and others.91 Their

observed valley, however, differed from the hypothesised

one, depending on what was measured and displayed in

the graph.

90 Tobias Kuhn, ‘A principled approach to grammars for controlled natural languages and predictive editors’ (2013) 22(1) Journal of Logic, Language

and Information 33, 33–34; Kowalski, Dávila, and Calejo (n 36) 5.
91 Maya B Mathur and others, ‘Uncanny but not confusing: Multisite study of perceptual category confusion in the Uncanny Valley’ (2020) 103

Computers in Human Behavior 21, 26–27.

14

CRCL volume 2 issue 1 • CRCL22: Computational ‘Law’ on Edge 2025

Figure 8: The ‘Uncanny Valley’ of CNLs for Computable Contracts – An ascending graph describing the growth of acceptance of CNLs for

contracts as they become more like natural language. The graph shows a deep valley before the plateau of being like a natural

language.

Analysis

I posit that while looking like natural (legal) language is a

net positive for the adoption and comprehension of com-

putable contracts, there is an ‘Uncanny Valley’, a point

on the transition from programming language to indistin-

guishable from natural legal language where a computable

contract language looks like a natural language contract,

like any ordinary contract, but where it is harder to com-

prehend and write. This ‘valley’ then provokes a dislike and

unacceptance in users and stakeholders, not due to looks,

but due to difficulty of use. Instead of helping adoption

and understanding of the computable contract, this CNL

then makes it harder to understand and even creates con-

fusion. Below, I will further contextualise my findings and

the hypothesis of the ‘Uncanny Valley’ by describing and

categorizing CNLs as an interface and as ‘legalism’ or in

other words an attempt to enforce legal certainty through

code.

CNLs as an Interface

Primarily, text, whether in a legal contract or a computable

contract, and whether a natural language text or a com-

putable text, is an interface. The limitations and the

subsequent confusion described above occur for CNLs

within the textual interface because the compatibility and

comprehension by man and machine alike of a CNL are

achieved by limiting grammatical structures, words, and

logical constructs that can be employed when writing the

computable contract, that is, when using the CNL as an in-

put device.92 While this usage is not a given, it is the main

one highlighted by projects such as Lexon and Logical En-

glish. These observed limitations and confusion mean

that many rules need to be memorised and applied for

competent use when writing new content in a CNL. These

rules bear no relation to the existing language knowledge

of the user, are often not derivable according to certain

fundamental principles and thus have to be memorised

(or checked automatically against a written grammar or

a compiler). This issue means that using a CNL is like a

92 Wyner (n 51) 422–424.

15

CRCL volume 2 issue 1 • CRCL22: Computational ‘Law’ on Edge 2025

completely new language, even though it does not look like

it. The rules as to which constructs are allowed or not often

do not follow any general, intuitive practice. As a result the

writer may be tempted to write in the original natural lan-

guage, even when the CNL does not permit such usage.93

Such CNLs, in effect, have to be learned like a foreign lan-

guage, eliminating a key benefit of using CNLs based on

a natural language. This effect is similar to ‘false friends’

when learning English and makes learning harder. Further

aspects, such as technological wariness or incompatibility

with contracting rituals, can also contribute to the uncan-

niness of CNLs for (computable) contracts.94

Furthermore, in examples such as Inform7,95 a natural

language-like programming language for programming

text adventures, the language is not ambiguous and can

be used to program. However, while it is easily readable, it

is also very verbose. This verbosity can be circumvented

by employing specific keywords and limiting the domain.

However, the more general an application is attempted,

the more problematic this becomes. As a result, it is much

harder to arrive at a general CNL for the description and

automation of computable contracts. Beyond the techni-

cal and linguistic challenges, it also has to gain acceptance

and be easy to learn.96 This relation between generality

and domain limitation for ease of use is so far unsolved

and might be inherent.

Last, I will discuss the use of a CNL as an output device.

The example of Inform7 can also help us learn about CNLs

as an output interface, as it shows a similar problem for

output to a CNL – any output based on programming code

will likely be very verbose once it is necessarily expanded

to form natural-like sentences. Moreover, whether it accu-

rately conveys the meaning of the computer code would

have to be studied separately. The closest comparator is

the L4 DSL and the L4 project’s plans for isomorphic nat-

ural language generation from L4 code.97 In any case, the

resulting language would not necessarily lead to a proper

natural language document, as it would have to be isomor-

phic to the computer code.98

The above sums up the confusion and issues surrounding

the use of CNLs for contracts and is also why CNLs sound

better in theory or when only reading them as opposed to

when researchers or users try to use them.

Some shortcomings of CNLs could be improved by follow-

ing Wyner et al.’s high-level and design properties, though

only to a limited degree. Some limitation is inherently

necessary for a CNL, since there are conflicts between dif-

ferent design objectives such as the CNL being both un-

ambiguous for a computer, and having a high degree of

expressivity.99

In summary, the use of CNLs as an interface for com-

putable contracts present various issues, such as the

plethora of rules that need to be memorised for competent

use, rules often bearing no relation to existing language

knowledge or following intuitive patterns. Additionally,

domain limitation can make CNLs easier to learn, but it

also makes them less useful. Lastly, in many instances of

proposing usage of a CNL for computable contracts there is

no guarantee that the meaning of the contract is accurately

conveyed and overall, CNLs often sound better in theory

than in practice and when using them actively.

CNLs as Legalism

Codifying the law, whether by programming language or

CNL, is generally done to make law computable, as then

it can be embedded it into a business process, a process

of legal adjudication, or contractual enforcement.100 The

use of computable contracts is a symptom of codifying

more and more agreements, of trying to make contractual

processes predictable and rigid. The same thus applies to

93 Wyner and others (n 43) 3–5.
94 Joanne P Braithwaite, ‘Standard form contracts as transnational law: evidence from the derivatives markets’ (2012) 75(5) The modern law review 779.
95 Graham Nelson, ‘About Inform7’ (2006) 〈http://inform7.com/about/〉.
96 In a similar pattern, many inventors in the 19th century sought to create an artificial language from scratch, that was supposed be more logical and

just better than natural language, but almost none of them took into account how easy it was to learn.
97 Listenmaa and others (n 76) 1.
98 Clack (n 11) 19.
99 Wyner and others (n 43).
100 Surden (n 24) 659, 663, 688.

16

http://inform7.com/about/

CRCL volume 2 issue 1 • CRCL22: Computational ‘Law’ on Edge 2025

CNLs for computable contracts, and this enforces certain

properties on otherwise flexible legal instruments. This re-

inforcement of legalistic properties can be very welcome,

especially when business analysts and economists hear

‘reduction of transaction costs’. However, this focus can

also lead to a fixation on legal certainty and only look-

ing at short-term costs. This tale is especially prevalent in

the narratives that helped the blockchain industry grow.

In these narratives, blockchain was depicted as offering a

counterpart to the squishy and malleable system of law

in the real world. An unstoppable codified smart contract

would fix right and wrong in contract disputes once and

for all.101

In a recent article, Laurence Diver described this much

more eloquently and termed it ‘computational legalism’.102

He goes on to say that delay, (on which both legality and

contracts are built), must be taken into account when digi-

tising law. Otherwise, there is a risk of constraining law to

the limits of the code, as Diver says. Others have described

similar concerns not with regard to delay but equity or

other interpretative methods.103

As a result, even when not looking specifically at compu-

tation like Diver but at the language used to create com-

putable contracts, concerns about the implications of le-

galism should be taken into account by all involved. Lan-

guage developers, especially, too often disregard the re-

stricting implications of legalism or leave them to users

to take care of. This realisation does not mean that CNLs

for computable contracts are not useful; at the very least,

they can make existing code more accessible where there

is inherent business logic, or they can allow a legal contract

to be created and governed more explicitly, as opposed to

only implicitly through code.

The ‘Uncanny Valley’, as a gap between the perceived and

actual textual representation of contracts, also is related

to this concept of legalism, as a CNL can be a technical

measure to solidify a legalistic approach to interpretation

and necessarily restricts expressivity to make the language

non-ambiguous and executable. While CNLs specifically,

and computable contracts generally, can also improve ac-

cessibility and can in theory support delay and other affor-

dances in law, legalism, as Diver calls it, is a strong driver

for many CNL inventors.104 This driving force motivated

and motivates both historical language inventors105 and

the developers of CNLs targeting law, regulation, or con-

tracts, as both groups favoured and favour a rigid rule-

based logic. The lure of reduced transaction costs only

adds to the allure of legalism.106

In qualifying CNLs as a form of legalism, I base my argu-

ment on several points. Mainly, this stems from a vision of

law which affords legal certainty through codification, a vi-

sion hailed by CNL inventors as delivering affordances that

are in contrast with the affordances of non-computable

law. Additionally, CNLs can make the relationship between

code and law more explicit, and therefore more accessible.

Lastly, the ‘Uncanny Valley’ as a gap between perceived

and actual textual representation of computable contracts

also signifies the legalistic aspects of CNLs.

Conclusion

In the paper, based on observation and experimentation

with CNLs for computable contracts, I analysed the socio-

legal and techno-legal aspects of these CNLs in a qualita-

tive way, based on how they read and write and by refer-

ence to existing work and literature. I argued that CNLs

101 Primavera de Filippi, ‘Blockchain Technology as an Instrument for Global Governance’ (SciencesPo - Chaire Digital, Gouvernance et Souveraineté

2020 2020); Primavera De Filippi, Chris Wray, and Giovanni Sileno, ‘Smart Contracts’ (10 Internet Policy Review 2021) 〈https://policyreview.info/

glossary/smart-contracts〉; Marcella Atzori, ‘Blockchain Technology and Decentralized Governance: Is the State Still Necessary?’ (2017) 6 Journal of

Governance and Regulation.
102 Laurence Diver, ‘Computational legalism and the affordance of delay in law’ (2021) 1(1) Journal of Cross-disciplinary Research in Computational

Law.
103 Maren K Woebbeking, ‘The impact of smart contracts on traditional concepts of contract law’ (2019) 10 J. Intell. Prop. Info. Tech. & Elec. Com. L.

105.
104 Henning Diedrich, Lexon Bible: Hitchhiker’s Guide to Digital Contracts (Wildfire Publishing 2020) 120.
105 Okrent (n 5) 69.
106 Surden (n 24) 688.

17

https://policyreview.info/glossary/smart-contracts
https://policyreview.info/glossary/smart-contracts

CRCL volume 2 issue 1 • CRCL22: Computational ‘Law’ on Edge 2025

can make computable contracts more readable. However,

they are not very helpful for making computable contracts

or business logic more accessible or user-friendly and of-

ten they do not seem to be designed with actual users in

mind. This seems similar to how early language inventors

failed at making their languages usable. For this concept

of hard-to-use CNLs, I coined the phrase ‘The Uncanny

Valley of Computable Contracts’.107 This term depicts a

valley in the acceptance of more natural-language-like lan-

guages, which lie in an unfortunate middle ground be-

tween a programming language or a simple CNL and a

natural language. This middle ground makes them great

to look at but challenging to use and master. Naming this

concept in such a way gives an easier way to reference the

phenomenon in subsequent literature and may connect

formerly disconnected strands of literature. Using a CNL

merely for the output of a computable contract is also fea-

sible and would work much better with fewer headaches,

but so far, no projects have proposed this as a main usage

scenario. A further scenario is a comprehensive contrac-

tual stack that can accommodate not only code and natural

language text but also graphical user interfaces.

References

Allen JG, ‘Wrapped and stacked:‘smart contracts’ and the

interaction of natural and formal language’ (2018) 14(4)

European Review of Contract Law 307.

Antoniou G and Billington D, ‘Relating defeasible and de-

fault logic’ in Australian Joint Conference on Artificial

Intelligence (2001).

Antoniou G and others, ‘Embedding defeasible logic into

logic programming’ (2006) 6(6) Theory and Practice of

Logic Programming 703.

Aotearoa O, ‘BetterRules’ (2022) 〈https://github.com/

BetterRules/openfisca-aotearoa〉.
APE authors, ‘APE - Illegal Words’ (2021) 〈https:

//github.com/Attempto/APE/blob/61c9b264dd/

prolog/lexicon/illegalwords.pl〉.

Atzori M, ‘Blockchain Technology and Decentralized Gov-

ernance: Is the State Still Necessary?’ (2017) 6 Journal

of Governance and Regulation.

Braithwaite JP, ‘Standard form contracts as transnational

law: evidence from the derivatives markets’ (2012) 75(5)

The modern law review 779.

Clack CD, ‘Languages for smart and computable contracts’

(2021) 〈https://arxiv.org/pdf/2104.03764〉.
developers TC, ‘The Catala compiler and tooling’ (2020)

〈https://github.com/CatalaLang/catala〉.
Diedrich H, Lexon: Digital Contracts (Wildfire Publishing

2019).

— Lexon Bible: Hitchhiker’s Guide to Digital Contracts

(Wildfire Publishing 2020).

Diver L, ‘Computational legalism and the affordance of

delay in law’ (2021) 1(1) Journal of Cross-disciplinary

Research in Computational Law.

Filippi P de, ‘Blockchain Technology as an Instrument for

Global Governance’ (SciencesPo - Chaire Digital, Gou-

vernance et Souveraineté 2020 2020).

Filippi PD, Wray C, and Sileno G, ‘Smart Contracts’ (10 In-

ternet Policy Review 2021) 〈https://policyreview.info/

glossary/smart-contracts〉.
Flood MD and Goodenough OR, ‘Contract as automaton:

Representing a simple financial agreement in compu-

tational form’ (2022) 30(3) Artificial Intelligence and

Law 391.

Foundation L, ‘Lexon-Rust’ (2020) 〈https://gitlab.com/

lexon-foundation/lexon-rust〉.
Framework G, ‘GF Resource Grammar Library (RGL)’

(2008) 〈https://github.com/GrammaticalFramework/

gf-rgl〉.
Fuchs NE, Schwertel U, and Schwitter R, Attempto

Controlled English (ACE) - Language Manual 99.03

(techspace rep, Institut für Informatik der Universität

Zürich 1999).

Gnesereth M, ‘Computable Contracts Project’ (2015) 〈http:

//compk.stanford.edu/〉.
Goodenough OR, ‘Developing a Legal Specifica-

tion Protocol: Technological Considerations and

Requirements’ (2019) 〈https://law.stanford.edu/

publications/developing-a-legal-specification-

protocol-technological-considerations-and-

requirements/〉.

107 More precise would be ‘The Uncanny Valley of Controlled Natural Languages for Computable Contracts’.

18

https://github.com/BetterRules/openfisca-aotearoa
https://github.com/BetterRules/openfisca-aotearoa
https://github.com/Attempto/APE/blob/61c9b264dd/prolog/lexicon/illegalwords.pl
https://github.com/Attempto/APE/blob/61c9b264dd/prolog/lexicon/illegalwords.pl
https://github.com/Attempto/APE/blob/61c9b264dd/prolog/lexicon/illegalwords.pl
https://arxiv.org/pdf/2104.03764
https://github.com/CatalaLang/catala
https://policyreview.info/glossary/smart-contracts
https://policyreview.info/glossary/smart-contracts
https://gitlab.com/lexon-foundation/lexon-rust
https://gitlab.com/lexon-foundation/lexon-rust
https://github.com/GrammaticalFramework/gf-rgl
https://github.com/GrammaticalFramework/gf-rgl
http://compk.stanford.edu/
http://compk.stanford.edu/
https://law.stanford.edu/publications/developing-a-legal-specification-protocol-technological-considerations-and-requirements/
https://law.stanford.edu/publications/developing-a-legal-specification-protocol-technological-considerations-and-requirements/
https://law.stanford.edu/publications/developing-a-legal-specification-protocol-technological-considerations-and-requirements/
https://law.stanford.edu/publications/developing-a-legal-specification-protocol-technological-considerations-and-requirements/

CRCL volume 2 issue 1 • CRCL22: Computational ‘Law’ on Edge 2025

Gordon TF, ‘Some problems with prolog as a knowl-

edge representation language for legal expert systems’

(1987) 3(1) International Review of Law, Computers &

Technology 52.

Harman G, ‘The importance of Bruno Latour for philoso-

phy’ (2007) 13(1) Cultural studies review 31.

Hoefler S, The Syntax of Attempto Controlled English: An

Abstract Grammar for ACE 4.0 (techspace rep, Institut

für Informatik der Universität Zürich 2004).

Idelberger F, ‘step21/computable-contracts: Turing -

Cleanroom Release’ (Zenodo July 2022) 〈https://doi.

org/10.5281/zenodo.6877324〉.
— ‘The Uncanny Valley of Computable Contracts: Analy-

sis of Computable Contract Formalisms with a Focus

towards Controlled Natural Languages’ (PhD thesis,

European University Institute 2022).

Kellermann G, ‘Leichte und Einfache Sprache–Versuch

einer Definition’ (2014) 64(9-11) Aus Politik und Zeit-

geschichte 7.

Kelso LO, ‘Does the Law Need a Technological Revolution’

(1945) 18 Rocky Mountain Law Review 378.

Kery MB and others, ‘The story in the notebook: Ex-

ploratory data science using a literate programming

tool’ in Proceedings of the 2018 CHI conference on hu-

man factors in computing systems (2018).

Klinger D and Véronique GD, ‘La grammaire du Français

fondamental: Interrogations historiques et didac-

tiques’ [2006] (36) Documents pour l’histoire du

français langue étrangère ou seconde.

Kowalski R, ‘Predicate logic as programming language’ in

IFIP congress (1974) vol 74.

— ‘English as a logic programming language’ (1990) 8(2)

New Generation Computing 91.

Kowalski R and Datoo A, ‘Logical English meets legal En-

glish for swaps and derivatives’ (2022) 30(2) Artificial

Intelligence and Law 163.

Kowalski R, Dávila J, and Calejo M, ‘Logical English for legal

applications’ in XAIF, Virtual Workshop on Explainable

AI in Finance (2021).

Kuhn T, ‘Acerules: Executing rules in controlled natural

language’ in M Marchiori, JZ Pan, and C de Sainte Marie

(eds), International Conference on Web Reasoning and

Rule Systems (2007).

— ‘A principled approach to grammars for controlled nat-

ural languages and predictive editors’ (2013) 22(1) Jour-

nal of Logic, Language and Information 33.

— ‘A survey and classification of controlled natural lan-

guages’ (2014) 40(1) Computational linguistics 121.

Listenmaa I and others, ‘An NLG pipeline for a legal expert

system: a work in progress’ (2021) 〈https://arxiv.org/

abs/2107.02421〉.
Listenmaa I and others, ‘Towards CNL-Based Verbaliza-

tion of Computational Contracts’ in T Kuhn and others

(eds), Proceedings of the Seventh International Work-

shop on Controlled Natural Language (CNL 2020/21)

(2023).

Liu H and Lieberman H, ‘Metafor: Visualizing stories as

code’ in Proceedings of the 10th international confer-

ence on Intelligent user interfaces (2005).

LogicalContracts authors, ‘Logical English - Knowl-

edge Base - Citizenship’ (2022) 〈https://

github.com/LogicalContracts/LogicalEnglish/blob/

2bc845870afa3b8fc57ac1e5fd0cd7ffab13a106/kb/0%

5C_citizenship.pl〉.
Ma M, ‘Writing in Sign: Code as the Next Contract Lan-

guage?’ (2020) Release 1.0 MIT Computational Law Re-

port.

Ma M and others, ‘Deconstructing Legal Text: Object-

Oriented Design in Legal Adjudication’ (2020) Release

1.0 MIT Computational Law Report.

Macneil IR, ‘Reflections on relational contract’ [1985]

(H. 4) Zeitschrift Für Die Gesamte Staatswis-

senschaft/Journal of Institutional and Theoretical

Economics 541.

Mathur MB and others, ‘Uncanny but not confusing: Mul-

tisite study of perceptual category confusion in the

Uncanny Valley’ (2020) 103 Computers in Human Be-

havior 21.

Merigoux D, Chataing N, and Protzenko J, ‘Catala: a pro-

gramming language for the law’ (2021) 5(ICFP) Pro-

ceedings of the ACM on Programming Languages 1.

Mori M, MacDorman KF, and Kageki N, ‘The Uncanny Val-

ley’ (2012) 19(2) IEEE Robotics & Automation Magazine

98.

Morris J, Rules as Code: How Technology May Change

the Language in Which Legislation Is Written, and

What It Might Mean for Lawyers of Tomorrow, ‘ABATE-

CHSHOW’ (2021).

Nelson G, ‘About Inform7’ (2006) 〈http://inform7.com/

about/〉.

19

https://doi.org/10.5281/zenodo.6877324
https://doi.org/10.5281/zenodo.6877324
https://arxiv.org/abs/2107.02421
https://arxiv.org/abs/2107.02421
https://github.com/LogicalContracts/LogicalEnglish/blob/2bc845870afa3b8fc57ac1e5fd0cd7ffab13a106/kb/0%5C_citizenship.pl
https://github.com/LogicalContracts/LogicalEnglish/blob/2bc845870afa3b8fc57ac1e5fd0cd7ffab13a106/kb/0%5C_citizenship.pl
https://github.com/LogicalContracts/LogicalEnglish/blob/2bc845870afa3b8fc57ac1e5fd0cd7ffab13a106/kb/0%5C_citizenship.pl
https://github.com/LogicalContracts/LogicalEnglish/blob/2bc845870afa3b8fc57ac1e5fd0cd7ffab13a106/kb/0%5C_citizenship.pl
http://inform7.com/about/
http://inform7.com/about/

CRCL volume 2 issue 1 • CRCL22: Computational ‘Law’ on Edge 2025

Okrent A, In the land of invented languages: Adventures

in linguistic creativity, madness, and genius (Spiegel &

Grau Trade Paperbacks 2010).

Ranta A, Grammatical framework: Programming with mul-

tilingual grammars (vol 173, CSLI Publications, Center

for the Study of Language and Information Stanford

2011).

Ranta A and others, ‘Abstract syntax as interlingua: Scaling

up the grammatical framework from controlled lan-

guages to robust pipelines’ (2020) 46(2) Computational

Linguistics 425.

Rühl G, ‘Smart (Legal) Contracts, or: Which (Contract) Law

for Smart Contracts?’ in B Cappiello and G Carullo

(eds), Blockchain, Law and Governance (Springer In-

ternational Publishing 2021).

Sergot MJ and others, ‘The British Nationality Act as a logic

program’ (1986) 29(5) Communications of the ACM

370.

Solidity Developers, ‘Ethereum/Solidity’ (2015) 〈https://

github.com/ethereum/solidity〉.

Surden H, ‘Computable Contracts’ (2012) 46 University of

California Davis Law Review 629.

Thomas MS, ‘Teaching Sociolegal Research Methodology:

Participant Observation: Special Issue on Active Learn-

ing and Teaching in Legal Education’ (2019) 14(14) Law

& Method.

Wallace B, ‘When software and law are the same

thing’ (2019) 〈https://2019.pycon-au.org/talks/when-

software-and-law-are-the-same-thing〉.
Woebbeking MK, ‘The impact of smart contracts on tradi-

tional concepts of contract law’ (2019) 10 J. Intell. Prop.

Info. Tech. & Elec. Com. L. 105.

Wong M, ‘Computable contracts: From Academia to in-

dustry’ (2018) 2 Rechtshandbuch Legal Tech 315.

Wyner A, ‘From the Language of Legislation to Executable

Logic Programs’ in M Araszkiewicz and K Płeszka

(eds), Logic in the Theory and Practice of Lawmaking

(Springer International Publishing 2015).

Wyner A and others, ‘On controlled natural languages:

Properties and prospects’ in NE Fuchs (ed), Interna-

tional workshop on controlled natural language (2009).

20

https://github.com/ethereum/solidity
https://github.com/ethereum/solidity
https://2019.pycon-au.org/talks/when-software-and-law-are-the-same-thing
https://2019.pycon-au.org/talks/when-software-and-law-are-the-same-thing

CRCL volume 2 issue 1 • CRCL22: Computational ‘Law’ on Edge 2025

A reply: Uncanny to Whom? Usability in light of purpose
and provenance of domain-specific languages for law

Emma Tosch • Northeastern University, e.tosch@northeastern.edu

The Uncanny Valley of Computable Contracts surveys the

use of five formal languages for writing legal documents,

performing an analysis similar to a cognitive walkthrough

in the human-computer interaction (HCI) literature,108

while drawing an explicit connection to the ‘uncanny val-

ley’ phenomenon of human-robot interaction.109 The lan-

guages under study range from controlled natural lan-

guages to programming languages; all are suitable for en-

coding legal agreements in terms of their ability to express

legal concepts.

The significance of this work lies in its emphasis on the

user experience when attempting to read and encode legal

reasoning using these domain-specific languages (DSLs).

However, the description of these languages’ ‘uncanniness’

leads us to ask: uncanny for whom? We will address this

question in two parts. First we will address why one would

design a DSL in the first place. Then we will discuss the

role of the designer and their target audience.

Motivations for designing DSLs. First we observe that all

of the reasoning DSLs provide could also be directly en-

coded in a general purpose programming language. There

are three common axes along which one might justify the

introduction of a DSL: usability, efficiency and correctness.

Programs written in DSLs are typically shorter with built-in

domain-specific abstractions – often in the form of key-

words or operators that correspond to some core concept

in the domain – that improve their usability. DSLs are also

higher-level than their general purpose language coun-

terparts, often automating lower-level decision making;

this automation can optimise generated code, leading to

performance improvements (i.e., using fewer resources,

such as time, space, energy, etc.). Finally, many DSLs can

be proven to have certain desirable properties by virtue

of their formal semantics or their use of provably-correct

software components. Thus, DSLs may come with guaran-

tees where any program written in the language is correct

with respect to some property, simply by virtue of being

written in the language.

In the context of the law, a key attraction of DSLs is that one

small change to the written law ought to correspond to one

small change in the DSL encoding. Any change to the DSL

encoding then propagates to the executable code without

further intervention from a person. This relationship is not

necessarily preserved when we encode the law directly in

a general purpose programming language. Thus, the value

of DSLs lies in their specificity.

DSLs should lower the barrier for domain experts to per-

form specific tasks. Practising law – i.e., professionally

interpreting or writing legal texts – is regulated, often re-

quiring years of training and accreditation.110 Despite the

professionalisation of practising law, it is still common for

lay people to, for example, write or enter into contracts

without the involvement of a lawyer.111 Thus, while do-

main experts could be lawyers or other policy-makers, they

could also be businesspeople, scientists or other experts

whose work requires interpreting or writing legal docu-

ments.

Background of DSL designers. Given the variability of

who writes and interprets legal documents, the ‘uncan-

niness’ of using formal DSLs for law may increase as the

actual community of users drifts away from the original

intended community of users. It can also be helpful to

108 Clayton Lewis and Cathleen Wharton, ‘Cognitive Walkthroughs’ in Handbook of Human-Computer Interaction (Elsevier 1997).
109 Masahiro Mori, Karl F MacDorman, and Norri Kageki, ‘The Uncanny Valley’ (2012) 19(2) IEEE Robotics & Automation Magazine 98.
110 Harold L Wilensky, ‘The professionalization of everyone?’ (1964) 70(2) American journal of sociology 137.
111 Tess Wilkinson-Ryan and David A Hoffman, ‘The common sense of contract formation’ (2015) 67 Stanford Law Review 1269.

21

mailto:e.tosch@northeastern.edu

CRCL volume 2 issue 1 • CRCL22: Computational ‘Law’ on Edge 2025

contextualise some of these languages in terms of who

originally designed them and for what purpose. We will

now consider two of the languages featured in this survey:

Attempto Controlled English (ACE) and Catala.

ACE is not explicitly a legal DSL, which the author of this

article acknowledges. ACE was originally developed by re-

searchers from natural language processing and linguistics

for use by software and web developers or other profes-

sional looking to formally encode knowledge.112 Critically,

ACE was developed in the artificial intelligence (AI) com-

munity, rather than in the programming languages (PL)

community. This is not unusual; most formal languages

in use were not developed by PL researchers, but rather

by experts or practitioners for whom a new formal lan-

guage was the solution to some extant domain problem.

It is increasingly the case that when PL researchers design

languages, they do so as domain outsiders, requiring input

from target users in order realise the full spectrum of ben-

efits that DSLs can provide (i.e., usability, efficiency and

correctness).113

Catala is explicitly a legal DSL, not a constrained natural

language. Although Catala’s authors worked with input

from legal experts when designing the surface syntax, they

state that it is not their intention for lawyers to use Catala

‘unaccompanied’.114 Catala has some elements of ‘natural-

ness’, but unlike the CNLs featured, Catala is very obviously

a formal language. As such, the author considers it less ‘un-

canny’. Recast in HCI terms, Catala uses formality as a kind

of design friction that prevents users from experiencing a

false sense of security.

Unique challenges in DSLs for Law. While the author of

this article attributes some ‘uncanniness’ to ‘false friends’

found in controlled natural languages, the legal domain

can itself contribute to the problem. After all, legal texts

are already written in dialects which, despite appearances,

may not conform to the diction, grammar or semantics of

the apparent languages115. Thus any analysis of the us-

ability of formal languages for the law needs to identify

whether it is the domain (i.e., the law) or the language de-

sign causing confusion. I would contend that any DSL that,

for example, targets English-speaking lawyers as users is

unsuitable for English-speaking non-lawyers on account

of the fact that, despite appearances, the latter group lacks

fluency in the appropriate language.

Once a language has been designed, implemented and

released into the world, it becomes an object of study.

This is the context for the author’s work. While the au-

thor’s single-perspective view on the usability of formal

languages for law has value, further quantitative and quali-

tative assessment from stakeholders should be considered

before determining whether the languages under study are

too ‘uncanny’ for the target population (i.e., non-lawyers)

to use.

References

Chasins SE, Glassman EL, and Sunshine J, ‘PL and HCI:

better together’ (2021) 64(8) Communications of the

ACM 98.

Coblenz M and others, ‘PLIERS: a process that integrates

user-centered methods into programming language

design’ (2021) 28(4) ACM Transactions on Computer-

Human Interaction (TOCHI) 1.

Fuchs NE and Kaljurand K, ‘Attempto Controlled English

meets the challenges of knowledge representation, rea-

soning, interoperability and user interfaces’ [2006].

Lewis C and Wharton C, ‘Cognitive Walkthroughs’ in Hand-

book of Human-Computer Interaction (Elsevier 1997).

Mellinkoff D, The Language of the Law (Wipf and Stock

Publishers 2004).

112 Norbert E Fuchs and Kaarel Kaljurand, ‘Attempto Controlled English meets the challenges of knowledge representation, reasoning, interoperability

and user interfaces’ [2006] .
113 Sarah E Chasins, Elena L Glassman, and Joshua Sunshine, ‘PL and HCI: better together’ (2021) 64(8) Communications of the ACM 98; Michael

Coblenz and others, ‘PLIERS: a process that integrates user-centered methods into programming language design’ (2021) 28(4) ACM Transactions on

Computer-Human Interaction (TOCHI) 1.
114 Denis Merigoux, Nicolas Chataing, and Jonathan Protzenko, ‘Catala: a programming language for the law’ (2021) 5(ICFP) Proceedings of the ACM

on Programming Languages 1.
115 David Mellinkoff, The Language of the Law (Wipf and Stock Publishers 2004).

22

CRCL volume 2 issue 1 • CRCL22: Computational ‘Law’ on Edge 2025

Merigoux D, Chataing N, and Protzenko J, ‘Catala: a pro-

gramming language for the law’ (2021) 5(ICFP) Pro-

ceedings of the ACM on Programming Languages 1.

Mori M, MacDorman KF, and Kageki N, ‘The Uncanny Val-

ley’ (2012) 19(2) IEEE Robotics & Automation Magazine

98.

Wilensky HL, ‘The professionalization of everyone?’ (1964)

70(2) American journal of sociology 137.

Wilkinson-Ryan T and Hoffman DA, ‘The common sense

of contract formation’ (2015) 67 Stanford Law Review

1269.

23

CRCL volume 2 issue 1 • CRCL22: Computational ‘Law’ on Edge 2025

Author’s reponse

Florian Idelberger

I am grateful to Emma Tosch for her thoughtful reply to my

article on The Uncanny Valley of Computable Contracts.

Tosch’s response somewhat reframes the topics I was ad-

dressing. My focus is on Controlled Natural Languages

(CNLs). Tosch on the other hand focuses on Domain Spe-

cific Languages (DSLs). There is some overlap between

the two but they are not the same; a DSL need not be a

CNL and vice versa.116 Tosch considers the differences in

usability of DSLs as between lawyers and non-lawyers, and

the peculiarities of legal language that can also contribute

to uncanniness. In that vein, in relation to DSLs, Tosch

asks: Uncanny for whom?

A comparison of DSLs and CNLs Tosch describes the

motivations of DSL designers as usability, efficiency and

correctness, with which I largely agree. I would only add

that for CNLs, which are my main focus, the main feature

that sets them apart is the perceived usability aspect of

seeming and reading like natural language. The other fac-

tors identified by Tosch, like efficiency and correctness are

always higher for DSLs that are not CNLs, as they lack the

verbosity of natural language. The uncanniness I identified

mainly applies to CNLs.

Uncanniness as distance between languages. In the ar-

ticle I point to a ‘knowledge gap’ between CNLs and the

natural language on which they are based. This ‘knowledge

gap’ confuses the intuition users have built up for a specific

natural language or for their domain and leads to uncan-

niness. On this hypothesis, domain-specificity might be

assumed to lower uncanniness for legal experts (whether

lawyers or not) since it can decrease this knowledge gap

or make it easier for actors to cross it. This assumption

aligns with literature and personal experience.117 My argu-

ments were meant to convey that this domain-specificity

can help legal experts work with a particular CNL. How-

ever, I acknowledge that this depends very much on the

implementation of the CNL and how well it fits into the

workflow and use of language of these legal experts. This is

because not all legal language is the same, but might differ

based on education, personal preferences or for other rea-

sons. If these or other factors prevent the ‘knowledge gap’

from being bridged, then domain-specificity will not alle-

viate the uncanniness. For example, in the case of Lexon,

a CNL which allows smart contracts to be written in legal

terms, familiarity with blockchain code and the use of fixed

terms grounded in the blockchain system can help ease

the uncanniness. However, in my view this mostly helps

users who are familiar with smart contract code or the way

it adapts legal terms for smart contract code. It may not

help all legal experts let alone all users. Moreover empir-

ical research is needed to decide whether such domain-

specificity is close enough to the original domain to help

legal experts (or others) learn a legal CNL, or whether its

potentially different usage of familiar terms only leads to

confusion and frustration.

To conclude, the circumstances where domain-specificity

is helpful are likely very narrow, as the unique feature of

CNLs is their naturalness, and it is difficult to optimize

for that usability while also keeping the right domain-

specificity and other language metrics. In any case, more

research is needed into what exactly defines the uncan-

niness of CNLs, where it occurs and how it might be re-

duced.

116 ACE, one of the examples I refer to in the article, is a CNL but not a DSL.
117 Benjamin Hoffmann and others, ‘An empirical evaluation of a novel domain-specific language–modelling vehicle routing problems with Athos’

(2022) 27(7) Empirical Software Engineering 180.

24

	Introduction
	Methodology
	Structure

	Contracts
	Computable Contracts
	Historical Background On Languages
	Current Controlled Natural Languages
	Syntax and Semantics of Controlled Natural Languages
	Logic
	CNLs targeting Contracts
	CNLs targeting Law and Regulation
	Programming Languages targeting Law and Regulation

	The Uncanny Valley
	Analysis
	CNLs as an Interface
	CNLs as Legalism

	Conclusion
	Reply
	Response

