
Source Code Criticism
On Programming as a Cultural Technique

and its Judicial Linkages

Prof. Dr. Markus Krajewski∗

Abstract

Despite the growing body of research into cultural techniques, questions regarding the digital, such as

the operation of algorithms, have remained underexplored in this field of media studies. I will meet this

desideratum by examining programming as a cultural technique. Similar to methods in Critical Code

Studies (such as those by Mark Marino) this intends to situate algorithms in a discursive and historical

context by elucidating code through systematic commentary, and making software transparent by critical

analysis. The following is an attempt to shine some light into the black box, first by examining the varying

modes that create inaccessibility, making it difficult to understand and reconstruct code, and secondly,

by proposing a method that could remediate the opacity of algorithms. My approach aims to narrativise,

historicise, and discursivise code by means of extensive commentary, in order to provide a lever that

opens the

Keywords: Source Code Criticism, Critical Code Studies, Cultural Techniques, Programming as a Cultural

Technique, Commentary, Commentaries as a Judicial Practice, Commentaries as a Philological Practice,

Commentaries as a Coding Practice, Hermeneutics of Code

Replier: Katja de Vries • Senior Lecturer/Associate Professor, Uppsala University, Swe-

den. katja.devries@jur.uu.se.

Journal of Cross-disciplinary Research in Computational Law

© 2025 Markus Krajewski

DOI: pending

Licensed under a Creative Commons BY-NC 4.0 license

www.journalcrcl.org

∗ Professor of History and Theory of Media, University of Basel, markus.krajewski@unibas.ch

mailto:katja.devries@jur.uu.se
https://creativecommons.org/licenses/by-nc/4.0/
https://journalcrcl.org
mailto:markus.krajewski@unibas.ch
https://journalcrcl.org


CRCL volume 1 issue 3 2025

Obscure acts

It is possible to sue your neighbour if you are unable to

come to terms, and you can even bring a whale to trial.1

But it is much more complicated to prosecute algorithms.

A great deal of effort is required to bring a piece of code to

trial. First, its authorship is not necessarily linked to a legal

person. It is also difficult to clarify the facts and understand

how the software was built and how it runs – never mind

the challenge of changing the algorithm itself.2 There is

a ubiquitous but nevertheless obscure metaphor used to

denote the difficulty of understanding an algorithm’s func-

tion, steps and our ability to grasp its effects. To express

our helplessness in the face of the oversized influence of

algorithms, people usually speak of a “black box” within

which the software unfolds its functions.3 Something, data

X, for example the words “I am”, falls into an opaque recep-

tacle where it is processed without outside observation,

so that almost nobody knows how in the end data Y, for

instance the finished sentence “not Stiller”, has found the

light of day.

The following is an attempt to shine some light into the

black box, first by examining the varying modes of creating

inaccessibility that make it difficult to understand and re-

construct code. This paper/article then proposes a method

that could act as a remedy for the opacity of algorithms.

First, however, we shall look at the historical development

and linguistic effects of the metaphor of the black box, in

particular in comparison to the law, which some have sug-

gested is structurally similar to the functioning of software

code.4

In his history of the black box, Philipp von Hilgers recon-

structs two complementary foundational moments for the

term; one that is material and connected to a physical

object and one that is conceptual and was used in the bud-

ding field of cybernetics. The idea of the black box as a

technical device whose functioning we do not understand

can be dated very precisely to an instance of technologi-

cal transfer. In September 1940, the British chemist and

academic executive Henry Tizard sent the blueprints and

schematics of a new kind of radar equipment developed in

Great Britain, along with a prototype of this “magnetron”,

to a research and development team at MIT in Cambridge,

Massachusetts. The black anodized magnetron was sent in

an equally black metal deed box that became eponymous

for a technical device whose input and output is known,

but whose technical signal processing remains obscure

and opaque.5 The metaphor of the black box began with

such a box (the magnetron) transported within another

black box, whose function in this first transmission (from

England to the USA) was quite clear, even if the object itself

was encapsulated. “The black box is not a package that

one need only open to see its content. It contains more

black boxes.”6

Just a few years later, the term “black box” was established

as a concept in the newly forming field of cybernetics. The

term took root at an informal meeting at the Institute for

Advanced Study in Princeton, New Jersey on January 6-7,

1 See David Graham Burnett, Trying Leviathan. The nineteenth-century New York court case that put the whale on trial and challenged the order of

nature (Princeton University Press 2007).
2 One case in which legal recourse was possible occurred in Finland, where a man from a rural area was denied a microcredit by an algorithm on the

basis of that characteristic, see AlgorithmWatch, Automating Society Report 2019 (2019) and Markus Krajewski, ‘Hilfe für die digitale Hilfswissenschaft.

Von den Digital Humanities verspricht man sich wahre Wunder, obwohl sie nur eine einfache Hilfswissenschaft sind’ [2019] (85) Frankfurter Allgemeine

Zeitung N4, 119-121.
3 See, as an example that is almost a diagnosis of our times, Frank Pasquale, The Black box society. The secret algorithms that control money and

information (Harvard University Press 2016).
4 See Lawrence Lessig, Code. Version 2.0 (2. Auflage, Basic Books 2006); and for a counterargument, with a nuanced look at legal elements of

computerized systems Cornelia Vismann and Markus Krajewski, ‘Computer-Juridisms’ (2007) 8(29) Grey Room Architecture, Art, Media, Politics 90; for

the description of certain legal processes as black boxes see, e.g., Megan Wright, Shima Baradaran Baughman, and Christopher Robertson, ‘Inside the

Black Box of Prosecutor Discretion’ (2022) 55 UC Davis Law Review 2133; Lauren Sudeall and Daniel Pasciuti, ‘Praxis and Paradox: Inside the Black Box

of Eviction Court’ (2021) 74(5) Vanderbilt Law Review 1365; Wim De Mulder and others, ‘Are Judges More Transparent Than Black Boxes? A Scheme to

Improve Judicial Decision-Making by Establishing a Relationship with Mathematical Function Maximization’ (2021) 84(3) Law and Contemporary

Problems 47.
5 Philpp von Hilgers, ‘Ursprünge der Black Box’ in Ana Ofak and Philipp von Hilgers (eds), Rekursionen. Von Faltungen des Wissens (Wilhelm Fink Verlag

2010) 143–145.
6 Kathrin Passig, ‘Fünfzig Jahre Black Box’ (2017) 71(823) Merkur Deutsche Zeitschrift für europäisches Denken 16, 23.

2



CRCL volume 1 issue 3 2025

1945, where participants, including Norbert Wiener and

John von Neumann, made use of the metaphor. Warren

McCulloch, one of the intellectual fathers of artificial intel-

ligence, remembers a passionate duel between von Neu-

mann and Wiener, which he dated incorrectly as occurring

in the winter of 1943-4.7 The two debated about ways to

discover the function of a black box — in this hypothetical

case, war machinery captured from the Germans — with-

out opening it. After all, it is paradoxical. Once a black box

is opened and light falls into it,the contents then become

transparent and the ‘black’ disappears. One somewhat

delayed result of the arguments at Princeton, alongside

the series of Macy Conferences that began the following

year, was the 1956 Dartmouth workshop that sparked the

development of artificial neural networks (ANN). We re-

turn to ANN an architecture of knowledge, below. In the

meantime, it is important to note that the metaphor of

the black box had its start in a debate about the opacity of

German war-booty – an obscure box whose function can-

not be determined directly, but only through the detour of

the experimental input and output of varying electronic

currents or data streams.

Von Hilgers also points out that the concept of the black

box has advantages for computer scientists and software

developers, especially with a concept known in object-

oriented languages as “encapsulation”.8 As long as the

interface is clearly defined and input and output are spec-

ified, a great deal of time can be saved by not having to

examine the encapsulated methods and algorithmic struc-

tures. This means that hidden elements within programs

and software libraries, when they have a clearly defined use

and explicit application programming interfaces (API), can

remain closed regarding their architecture and may have

obscure internal functions. As encapsulation in software

libraries, repositories, and packages is understood as stabi-

lization, it may not necessary to reveal their construction.

Accordingly, in software development, the Schwarzgerät or

what Thomas Pynchon described as the terminus techni-

cus for the black box in Gravity’s Rainbow9 – is meant less

to obfuscate and more to simplify by reducing complex-

ity.

The analogy with written laws, whose application and in-

terpretation is often more interesting than the details of

their construction, genesis, and function, is easily appar-

ent. Although their original wording is easily accessible,

it can still be claimed that the text of laws is covered by

a veil of opacity. Their foundation is encapsulated: the

constitution is not explicitly mentioned in the wording of

individual laws, just as pre-existing methods, or the in-

tended functions, are encapsulated in software libraries,

and equally as impossible to reach. And despite their pub-

lication, laws also exclude something else inscribed in their

functioning, for example the issues that played a role in

their writing. Which lobby interests played a part in formu-

lating the text? What are its implicit assumptions? How do

the technicalities function and do they prove themselves

when used? Although their text is open to the public in

full, in many ways — and not only for laypeople — laws

operate in an opaque manner.10

Seeing through the Schwarzgerät

The power of algorithms results from a variety of opacities

that manifest themselves in different forms. In a first step

that makes absolutely no claim to be a systematic survey

of the field, a heuristic approach helps us delineate four

cases that show why algorithms are so difficult to grasp and

how the respective problems can be linked to a legislative

context.11

7 See Warren McCulloch, ‘Recollections of the Many Sources of Cybernetics’ (1974) 6(2) ASC Forum and, for the correction of the date Hilgers (n 5) 150,

note 42.
8 See, e.g., John C Mitchell, Concepts in programming languages (Cambridge University Press 2004) 418, 242; see also Erich Gamma and others (eds),

Design patterns. Elements of reusable object-oriented software (Addison-Wesley professional computing series, Addison-Wesley 1995) 42 ff.
9 In this case, the load encapsulated in the mysterious weapon turns out to be human: Gottfried shrouded in Imipolex G, see Thomas Pynchon, Gravity’s

Rainbow (Bantam Books 1974).
10 As it is, e.g., to a certain degree in the decision making of eviction courts in Georgia, as analysed by Sudeall and Pasciuti (n 4).
11 On other cases meant to prevent penetration of the black box and the corresponding reasons for the unintelligibility of software or the ubiquitous

slowness of thought, problems with synchronization and the complexity and size of code, etc. see Passig (n 6).

3



CRCL volume 1 issue 3 2025

Translation

As a problem-solving method, algorithms are in fact based

on a triad of functionality, understandability, and ele-

gance.12 But these fundamental principles are not neces-

sarily mirrored in every fragment of code. It is difficult to

live up to this ideal under the pressure to find a solution

and with the limited resources that dominate in day-to-day

working life. More importantly, in most cases algorithms

resist readability and hence replicability, because not all

software makes its source code, or the sequence of individ-

ual commands written in “plain text”, [Klartext]13 available

to a higher programming language. Yet only when the

source code is available can, depending on the language

used, the logic of the program be decoded, with more or

less effort depending on how abstract the commands, data

structure, and routines are: Are they written in English or

in Mandarin? Are the descriptions consistent, common,

and meant to be understood? Furthermore, one and the

same program code can be almost impossible to decipher

when it does not use generally understandable terms for

its commands (see Listings 1 and 2), but its algorithm is

immediately easier to comprehend as soon as such terms

are inserted (Listing 2).

Not until a second step, compiling, where the translation

of the source code into the binary code that the machine

can execute, is the algorithm further obfuscated or locked

into a black box that cannot easily be opened in retrospect.

By translating the algorithm into executable code (turning

it into a *.bin or *.exe file), it is encapsulated and locked

into its box where it can no longer be classified.14

There is a legal equivalent to closing code in this way, one

that goes back to juridical practice in the Roman Empire

in the sixth century CE: the pandects, to this day one of the

fundaments of civil law. This compendium or digest, as it

is also called, of varying legal cases and commentary acted

as a memory of judgements and decisions and at the same

time as a set of rules. At the behest of the emperor Jus-

tinian in 533 CE, these materials were brought together in

a book. This codex bundled the opinions of chosen Roman

legal scholars of the Republic and the Empire and codified

them into law. In the process, most lengthy commentaries

were left out when the book’s cover was shut — the lit-

eral meaning of codifying — and its contents elevated into

law.� �
206 private long rhksog(int lmvlkmvlsdf) {

207 if (lmvlkmvlsdf <= 1)

208 return lmvlkmvlsdf;

209 return rhksog(lmvlkmvlsdf − 1) +

rhksog(lmvlkmvlsdf − 2);

210 }

211

212 private long asdfasdfsadffasfsad(int herttjrtzhtr) {

213 long gdgijimkfe = 0;

214 for (int dsfidsjfi = 0; dsfidsjfi <= herttjrtzhtr ;

dsfidsjfi ++)

215 gdgijimkfe = rzsretsert(herttjrtzhtr) ;

216 return gdgijimkfe;

217 }� �
Listing 1: one and the same code in two styles: abstract at the

top. . .

� �
206 private long fibo(int n) {

207 if (n <= 1)

208 return n;

209 return fibo(n − 1) + fibo(n − 2);

210 }

211

212 private long fiboWithoutRecursion(int number) {

213 long j = 0;

214 for (int i = 0; i <= number; i++)

215 j = addFibonacciS(i);

216 return j ;

217 }� �
Listing 2: . . . and for hermeneuts below.

12 Donald E Knuth, ‘Computer Programming as an Art’ (1974) 17(12) Communications of the ACM 667, 670 informed by Jeremy Bentham’s utilitarian

concept of taste and style, goes even further in his software development and aims for beauty. Bentham, by the way, coined the term codification for the

legal practice in an anonymous pamphlet, published in 1776, see Charles Noble Gregory, ‘Bentham and the Codifiers’ (1900) 13(5) Harvard Law Review

344, 344
13 See Geoffrey Winthrop-Young, Friedrich Kittler zur Einführung (Junius Verlag 2005) 59, 62 ff.
14 Joasia Krysa and Grzesiek Sedek, ‘Source Code’ in Matthew Fuller (ed), Software studies. A lexicon (The MIT Press 2008); Markus Krajewski, ‘Against

the Power of Algorithms. Closing, Literate Programming, and Source Code Critique’ (2019) 23 Law Text Culture 119, 123

4

https://github.com/nachsommer/sourcecodecriticism/blob/main/FibonacciObfuscated.java
https://github.com/nachsommer/sourcecodecriticism/blob/main/JFramingFibonacci.java


CRCL volume 1 issue 3 2025

The commentaries became (illegitimate) explanations that

lacked the force of law.15

But such enclosing or codification is by no means irre-

versible. Just as Roman law was renewed or modified

from time to time, there are tools with which translation

into unreadable machine code can be at least partially re-

versed. Even executable code can be restored to its original

state, not least because a computer is a deterministic ma-

chine. This practice is called “reverse engineering” and

restores the example in Listing 1 to the state shown in fig-

ure 1.

What figure 1 shows, at a glance, is that the code no longer

seems as graspable as before: it is quasi naked. It lacks the

commentary and explanatory structures visible on the left

(displayed in light grey colour) -- for a good reason. The

machine, resp. the compiler, does not read in the commen-

tary as it contains no commands relevant for executing the

code. The compiler, of course, follows a different mode of

reading than the user trying to understand the source code.

That is, the compiler only interprets the commands – the

algorithmic structures of the code – whereas the human

user reads at least on two levels, the algorithmic structure

as well as the commands intended to elucidate, expand

and explain what is laid down in the commands. All that

has been reconstructed by the practice of reverse engi-

neering are these functional elements, methods, and data

structures, though with their original denomination; the

method fiboWithoutRecursion(n) is still meaningful, in-

stead of being renamed as opgdnwdukbsdkfbue(n) which

would imply a further escalation of obfuscation. The sub-

stitution of meaningful terms with nonsense strings in

legal contexts would, probably, not render any helpful ju-

ridical practice.

What could be the legal equivalent of reverse engineer-

ing? An amendment? More likely an appeal, which, like

reverse engineering, requires considerable additional ef-

fort. A decision is disputed and a new court must try the

case again from a new perspective. The law must be in-

terpreted one more time in order to reach the same or a

different verdict. That in turn means again looking one by

one at each procedural step, micro-decision, partial argu-

ment, method, and interpretation, all of which must be

reread and reconstructed to adjust the argumentation and

conclusions.

Though analogies are the fundamental method when gen-

erating new decisions in common law, the analogy be-

tween black boxes and obfuscation in algorithms and

in law, naturally, is limited. One major objection might

be, that in order to execute an even very obfuscated and

encapsulated–code snippet – every single step must be

made explicit to the compiler. Nothing is hidden or ob-

scured in the most far-fetched modules of software li-

braries, nothing will be kept encapsulated or in com-

pressed software libraries during compilation, since the

compiler needs to know what to do by pursuing all the

commands and its references line by line. If encapsula-

tion in software development should resemble the gating

and cutting off of concrete law cases during the process of

abstraction in the civil law, here, the black box metaphor

also fails, because for ruling according to an established

abstracted law one does not need to know all the cases

that have led to the formulation of this certain statute. The

compiler, however, must be fed with all the commands

hidden in encapsulated modules, the most abstract as well

as the most concrete. In the end, both systems, code com-

pilation as well as jurisdiction operate on a transparent ba-

sis where all the codes must be — at least theoretically —

available and made explicit, i.e. all the information is avail-

able to the highest instance.16 The ‘normal’ user, however

— whoever that is in the interaction with the computer/the

law — can be excluded from this transparency by strategies

of obfuscation, encapsulation, and codification.

Streams

Another factor that makes algorithms inaccessible is more

recent: the infrastructure of digital worlds. Data streams

are processed chiefly on the internet. Data, including ex-

ecutable codes, are no longer require local storage. They

are relocated to the cloud or to another external location

from where they can be fetched as needed, that is to say

‘made available’ in the form of a local data stream. This

is an ephemeral process — in keeping with the nebulous

cloud metaphor. There is no explicit, — or for the user,

15 See Markus Krajewski and Cornelia Vismann, ‘Kommentar, Code und Kodifikation’ (2009) Frühjahr 2009 Zeitschrift für Ideengeschichte 5, 7 ff.
16 For the compiler as sovereign, i.e. the most powerful instance in coding, see Vismann and Krajewski (n 4) 97 f.

5



CRCL volume 1 issue 3 2025

Figure 1: The same program, left in the original, right reverse engineered

transparent — local storage location planned for such data

streams. Whatever has no location remains inaccessible,

unaddressable, and hence obscure. It is impossible to get

hold of data without an address. The algorithms are encap-

sulated again, this time in data streams that are not fully

available, but work locally in real time and then disappear

again. Platforms like Spotify or Netflix act due to this logic;

they provide their data as streams not to be stored and ac-

cessed or even owned (in the legal sense) on the user’s local

file system. Instead, they are handled as ephemeral enti-

ties. Once watched or listened to they disappear, without

being further analysed or scrutinized.

Such difficulties can already be found in presocratic frag-

ments: We cannot step twice into the same river.17 When

dealing with data streams, the fundamental problem again

remains their inception. Where can we begin to under-

stand a data stream, when we do not know what was at

the onset? Without a beginning, no code can start or be

executed, never mind restored to its original state. With

streaming, both the run time and the starting time of the

code’s execution become crucial.

Tiers

A completely different type of inaccessibility as regards

algorithms can be found in an issue that is currently at

the fore of debates in and on computer science and its

sociotechnical impact: artificial intelligences and their so-

cial, habitual, ethical, economical, and last but not least

legal consequences. The primary difficulty here — in con-

trast to the case of conventional software architectures and

systems — is that not even the best computer scientist can

explain exactly how decisions are made within artificial

neural networks (ANN), much less reproduce the results

on a micro or macro level. This is due to the architecture of

ANN, which have a memory system of artificial neurons as

an electronic simulation of the human brain. This mem-

ory must be trained with data — whether images, texts,

or voices — until enough knowledge has been gathered

of the, so to speak, genus and species of the input data.

On a purely technical level, this knowledge is saved in vec-

tor spaces as probabilities of individual nodes that react

with other nodes at an input signal. When the training

is finished, the knowledge is frozen: the so-called model

can then only react to user queries by reproducing the in-

formation fed to its ‘brain,’ but not by incorporating new

17 Jaap Mansfeld (ed), Die Vorsokratiker. Griechisch / Deutsch (Erw. Neuausg., Nachdruck Auflage, Philipp Reclam jun 2012). Fragment 91, see also 12,

49a.

6



CRCL volume 1 issue 3 2025

information during the interaction. However, the model

does not always react the same way to specific input, but

differently and to a certain degree unpredictably, because

the decision path through the layers of artificial neurons

is probabilistic and does not operate with fixed trajecto-

ries or certainties in an if-then structure. The system’s

architecture follows a “connectionist paradigm”18 in which

individual artificial neurons can come together in a variety

of different constellations. That means that the same input

into an ANN or a black box will prompt different results,

even in processes that follow in quick succession.

The best legal analogy for an ANN might be an enormous,

many-tiered, closed digest. This digest contains myriad

cases, judgments, and legal trials, but these are not verba-

tim nor systematically ordered with a registry and index.

Instead, it is jumbled and fragmented, every fragment is

given a different relevance regarding how it connects to

other, neighbouring, particles and again to their neigh-

bours. If we take this analogy further, such a book of law

proves to be less than useful, for every (verbatim) input de-

livers a different output as a result of the micro-decisions

that depend statistically on one another and that take place

at every node of the hidden network layer, together leading

to ever-different verdicts.

The architecture of an ANN, which enables so-called “deep

learning” (a recursive process in which neural networks

are deployed that are linked to themselves and to lower

and higher tiers or, simplified, architectures with built-in

error correction),19 is made up of more than just its opera-

tion within a black box. A typical ANN — in the tradition

of its basic building block, the perceptron — consists of

three tiers: input, a hidden layer, and output. And this hid-

den layer, which is made up out of many interconnected

layers of artificial neurons,20 represents as it were — as in

its primal scene, the transport from Great Britain to Mas-

sachusetts of a black magnetron in a black box — the black

box in the black box.

The knowledge of an ANN is therefore not only encapsu-

lated in many black boxes, it is also atomized or dispersed

numerically in vector spaces, distributed among many tiny

electronic memory elements (artificial neurons), linked by

nothing other than a statistical value as a the probability of

transition to their respective neighbours and neighbours

of neighbours. At the centre of the encapsulated black box

of artificial neural networks is fog, a particularized form of

random micro-decisions that deliver remarkable achieve-

ments despite their fragmentation.21

The problem of decision making in black boxed AI systems

has long been a topical issue, ever since the first trials of

autonomous cars ran into legal difficulties that remain un-

resolved to this day: Who decides how to react in a harm-

ful traffic situation when all options are bad, the car, the

driver, the algorithm, the manufacturer, the software de-

veloper? And who bears the responsibility for the decision?

This problem is exacerbated by the aforementioned un-

predictability with which an ANN makes its decisions. This

can only be measured by certain test procedures in which

a whole series of similar decisions are also documented.

However, this contingency of ANNs can also be helpful, for

instance when it comes to the problem of legal uncertainty.

If judges, like ANNs, are viewed as black boxes, the path

of their decision making could be made transparent in a

manner similar to the case of ANNs, in that judges make

their alternatively considered options explicit as well.22

The — to a certain degree — unpredictable functioning of

a black box would thus be transformed from problem to

virtue.

Behind this, however, lies an even more fundamental prob-

lem of understanding: If not even computer scientists can

reconstruct the functioning of their own systems, which

18 Hannes Bajohr, ‘Algorithmic Empathy: Toward a Critique of Aesthetic AI’ (2022) 30(2) Configurations 203, 219 ff.
19 See Ethem Alpaydın, Machine learning. The new AI (MIT Press essential knowledge, The MIT Press 2016) 85 ff.
20 Pedro Domingos, The master algorithm. How the quest for the ultimate learning machine will remake our world (Basic Books 2015) 101.

21 For a visual example see Emily Lanza, Who Painted Rembrandt? Copyright and Authorship of Two Rembrandt Portraits (Published:

www.thelegalpalette.com, The Legal Palette, 2018); for textual examples see the results of GPT-3, designed by Tom B Brown and others, Language

Models are Few-Shot Learners (Published: arxiv.org, arXivorg, May 2020); e.g. with results like this: https://www.gwern.net/GPT-3, recently optimized

for dialogue with ChatGPT.
22 See De Mulder and others (n 4) 48,63, who also discuss the more general aspects of black boxes in jurisdiction and its similarities to artificial neural

networks.

7

https://www.gwern.net/GPT-3


CRCL volume 1 issue 3 2025

still operate within deterministic machines, how might a

detailed critical understanding of this technology be pos-

sible? The problem, it must be said, is also recognized

within the field of computer science and is currently re-

ceiving much attention under the denotation “explainable

AI” (XAI).23 One central finding is that while a black box

is operating, it can in principle no longer be opened —

like Schrödinger’s cat in the box. Transparency can be cre-

ated solely on the conceptual level, which leads us back to

source code. Only on this concrete level, that is before the

actual execution of the code, can decision-making paths

be understood or reconstructed. But a certain amount of

preparation is needed tto be able to work on source code.

The path to understanding — in classical tradition — fol-

lows the mileposts of a philological and historiographical

virtue: reading the sources. What does this mean con-

cretely?

The remedy: source code criticism

Even code that is freely available is not necessarily easily

readable. Source code that is not behind barriers or hidden

by other obfuscation or nebulization still resists readers

other than geeks, hackers, and nerds. Yet it is more ur-

gent than ever that genuine computer literacy exist outside

these groups. In the humanities and in law, scholars must

master and pass on the skills necessary to research not

only complex philosophical, legal, and literary texts, but

also code — from a critical perspective.

This is the starting point of programming as a cultural

technique — my proposal for a new methodology for deal-

ing with code beyond the computer sciences. It consists

of a process I here call “source code criticism”. The code

of a software project should be brought together with ex-

tensive explanatory commentary to form a work that is a

combination of text and code and that, in the best-case

scenario, can present its results in the form of both a book

on coding with its cultural explanation and as a software

application.

Cultural techniques, with their interaction of targeted

physical gestures and the use of objects such as tools,

instruments, or other media, act in a manner that has a

specific cultural impact. Research on cultural techniques

therefore investigates the practices of those processes that

are constitutive for culture in relation to their mediality,

including the procedures, gestures, and tools involved in

their historical development as well as their cultural and

epistemic foundations.24 Cultural techniques always have

an additional aesthetic component that goes beyond their

functionality alone, something that Donald Knuth for ex-

ample demands of programming — to take account of

questions of style, elegance, and not least beauty when

developing code.

Despite increased interest in and the growing institutional

importance of research into cultural techniques,25 to date

the issue of digital practices such as algorithm develop-

ment and how it functions as a cultural technique has been

mostly ignored. This desideratum must be met by examin-

ing coding as a cultural technique. This includes not only

the ability to read and write code or develop it for daily soft-

ware needs, but also to subject code to a critical analysis in

its discursive and historical contexts. In the future, this skill

will play a key role not only for scholars in the humanities,

but also for legal scholars, because these competencies

will be needed in more people than just professional soft-

ware developers, computer engineers, interface designers,

and, not least, the self-learning machines themselves. The

actions and design of said machines and the invention and

training of algorithms must be accompanied by critical

reflection and a broader understanding. Only then will it

be possible to demystify the spectre of the power of the

algorithms, to delimit and to analyze them.

23 See, e.g., Wojciech Samek and others (eds), Explainable AI: Interpreting, Explaining and Visualizing Deep Learning (Lecture Notes in Artificial

Intelligence, vol 11700, Springer International Publishing 2019).
24 See Erhard Schüttpelz, ‘Die medienanthropologische Kehre der Kulturtechniken’ (2006) 6 Archiv für Mediengeschichte 87; Bernhard Siegert, ‘Cultural

Techniques: Or the End of the Intellectual Postwar Era in German Media Theory’ (2013) 30(6) Theory, Culture & Society 48; Bernhard Siegert, Cultural

Techniques: Grids, Filters, Doors, and other Articulations of the Real (Geoffrey Winthrop-Young ed, Fordham University Press 2015).
25 See, e.g., Geoffrey Winthrop-Young, ‘The Kultur of Cultural Techniques. Conceptual Inertia and the Parasitic Materialities of Ontologization’ (2014)

10(3) Cultural Politics 376; Geoffrey Winthrop-Young, ‘Discourse, Media, Cultural Techniques: The Complexity of Kittler’ (2015) 130(3) Moden Language

Notes 447; Geoffrey Winthrop-Young, ‘Siren Recursions’ in Stephen Sale and Laura Salisbury (eds), Kittler Now: Current Perspectives in Kittler Studies

(Polity Press 2015); Geoffrey Winthrop-Young, ‘The Kittler Effect’ (2017) 44(132) New German Critique 205.

8



CRCL volume 1 issue 3 2025

Codes can only be domesticated through comments.26

Concretely, for scholars of text this means learning to

take a critical distance to algorithms. It means learning

to decode and segment them in order to investigate the

way in which they function, their impact and their lin-

guistic particularities, their design and style in order to

classify them according to historical, legal, cultural, or

political standards. This approach is slightly different

from that taken in the field of software studies as prop-

agated by Matthew Kirschenbaum,27 Stephen Ramsay,28

Lev Manovich,29 or Nick Montfort.30. The aim is also and

importantly to strengthen the digital literacy of scholars in

the humanities.31 Mark Marino in particular, in develop-

ing the innovative field of Critical Code Studies, has shown

how a discursive reading of algorithms can function, for

example in his close readings of the collaborative story

exquisite_code,32 and, more recently, of Friedrich Kittler’s

code production.33

By now it should be clear that instead of quantitative sta-

tistical or numerical analyses that look, for example, for

word frequency (a method used all too often in the dig-

ital humanities),34 programming as a cultural technique

instead aims to transfer a core competency of the humani-

ties, critical reading, to the digital world. This means being

able not only to understand, classify, and modify algo-

rithms, but also to be able to grasp and comment on them

using the termini, theories, concepts, and dispositifs of

literary criticism. This form of contextualization is what

makes it possible to deconstruct code as if it were a liter-

ary text. In marked contrast to this novel approach, the

opposite idea — designing software as if it were literature

— is by no means new. Donald E. Knuth, author of the

epochal book The Art of Computer Programming (1968-

2025) and of the TeX editing system, had in 1984 already

published an article with the equivocal title Literate Pro-

gramming that proposed writing source code from the

outset so that it contained more than the commands of

its respective programming language.35 As an alternative,

he called for a meta-level in which developers included

in-depth description of and commentary on the individual

commands. The source code would then comprise not

only the individual commands and data structure, but also

document the same. In this way, algorithms would be and

remain transparent—not only for their authors, but also

for readers and developers who came after (see listing 3 on

p. 10 and listing 4 on p. 12). It is hardly worth mentioning

that this paradigm is not applied in the daily routine of

professional software developers.

In the meantime, however, a comparable practice has

been established elsewhere that effectively interweaves

executable code and commentary, namely in the form

of the so-called Jupyter Notebooks, an open-source plat-

form whose format has been developed for the interactive

and collaborative analysis of measurement data. Crucially,

measurement data and their processing are framed by ex-

planations, metadata, and contextualizations that con-

tribute as so-called Jupyter Narratives to the understand-

ing of the respective analysis steps.36 The code cannot do

without supplementary explanatory material if it is to re-

main collaboratively comprehensible. A very similar form

26 Krajewski, ‘Against the Power of Algorithms. Closing, Literate Programming, and Source Code Critique’ (n 14).
27 Matthew Kirschenbaum, Hello Worlds. Why humanities students should learn to program (The Chronicle of Higher Education, 2009); Matthew

Kirschenbaum, ‘What Is Digital Humanities and What’s It Doing in English Departments?’ (2010) 47(150) ADE Bulletin 55.
28 Stephen Ramsay, Reading machines. Toward an algorithmic criticism (Topics in the digital humanities, University of Illinois Press 2011).
29 Lev Manovich, Software takes command (International texts in critical media aesthetics, vol 5, Bloomsbury 2013).
30 Nick Montfort, Exploratory programming for the arts and humanities (The MIT Press 2016).
31 See also Geoff Cox and Christopher Alex McLean, Speaking code. Coding as aesthetic and political expression (Software studies, The MIT Press 2013);

David M Berry and Anders Fagerjord, Digital Humanities. Knowledge and Critique in a Digital Age (Polity Press 2017); Daniel Punday, Computing as

Writing (University of Minnesota Press 2015); Mark C Marino, Critical Code Studies (Published: electronicbookreview.com, electronic book review, April

2006); Mark C Marino, Critical Code Studies and the electronic book review: An Introduction (Published: electronicbookreview.com, electronic book

review, 2010).
32 Mark C Marino, ‘Reading exquisite_code’ in NKatherine Hayles and Jessica Pressman (eds), Comparative textual media. Transforming the humanities

in the postprint era (Electronic mediations, University of Minnesota Press 2013) vol 42.
33 Mark C Marino, Critical code studies (Software studies, The MIT Press 2020) 161-197.
34 As one example: Franco Moretti, Distant reading (Verso 2013).
35 Donald E Knuth, ‘Literate Programming’ (1984) 27 The Computer Journal 97.
36 Brian Granger and Fernando Pérez, Jupyter: Thinking and Storytelling with Code and Data (Published: /www.authorea.com, Authorea, 2021) 4.

9



CRCL volume 1 issue 3 2025

� �
223 private void calculateSequence() {

224 /* What seems so interesting about calculating this series of numbers?

225 There are two reasons, one is the history of this algorithm, the other is the style , how this algorithm can be implemented.

226

227 1. In 1202, Fibonacci published the Liber Abaci, introducing not only the arabic

228 numerals, but also algorithms to occidental mathematics. It contains a famous series of numbers, baptised after him. He

229 developed his example by a famous scenario:

230 "How Many Pairs of Rabbits Are Created by One Pair in One Year. A certain man had one pair of rabbits together in a

231 certain enclosed place, and one wishes to know [...]."

232

233 2. The sequence of numbers can be calculated in two different ways, on the one hand most elegantly by a recursive method, starting

234 with the last generation and going back to the first, while it calls itself as a method while it calls itself as a method while it

235 calls itself as ... until the initial value n=1 is reached. Then all the numbers are available and can be added to the final sum.

236

237 On the other hand, the value can be calculated just by remembering the last and the last but one value. This is rather easy

238 concerning calculating power and ressources, however it takes more code to produce the non−recursive algorithm.

239

240 In the following, both ways are implemented, so the user can compare the differences by walking the code line by line... */

241

242 // Change the cursor to a wait state...

243 this .setCursor(Cursor.getPredefinedCursor(Cursor.WAIT_CURSOR));

244 // Clear the textfield ...

245 clearResults();

246 // Begin calculating...

247 for (int i = 1; i < jSlider1.getModel().getValue(); i++) {

248 // Determine whether the number shall be generated elegantly or bluntly...

249 if (recursively.isSelected()) {

250 // "To iterate is human, to recurse divine" (L Peter Deutsch)

251 Results.append("In generation " + i + " there are " + fibo(i ) + " rabbits.\n");

252 } else {

253 // This method goes rather by simple additions...

254 Results.append("In generation " + i + " there are " + fiboWithoutRecursion(i) + " rabbits.\n");

255 }

256 }

257 // Change the cursor back to a normal state...

258 this .setCursor(Cursor.getDefaultCursor());

259 }

260

261 private long fibo(int n) {

262 /* This code fragment is rather short, because it makes use of a specific trick:

263 The method fibo(n) calls itself within its definition: a classical recursion. This is most elegant, because the calculation

264 need only one line to be noted. However, this elegance comes with a huge consumation of calculation cycles. */

265 if (n <= 1) {

266 return n;

267 } else {

268 /* Here comes the crucial line: The return value of the function is a double call of the function itself . Before returning

269 number n it has to calculate the sum of number n−1 plus number n−2, where n denotes the generation of rabbits. */

270 return fibo(n − 1) + fibo(n − 2);

271 }

272 }� �
Listing 3: A recursion generating Fibonacci numbers and its explanation

10

https://github.com/nachsommer/sourcecodecriticism/blob/main/JFramingFibonacci.java


CRCL volume 1 issue 3 2025

can be found in Australian legal practice where, within the

framework of legislative procedures and regulatory instru-

ments, the process of creating the law is also documented

with additional explanatory material (elucidating its ori-

gins, reasons and forms of the law to be enacted) in order

to serve as an aid both for the subsequent application of

the laws and their critical scholarly monitoring.

Literature, law, code, and their criticism are structurally

closer than it might at first seem. Just as the cultural tech-

nique of reading at an academic level allows the reader to

lay bare the manner in which the text was constructed: its

rhetoric, its production of affect, its style, and its literary

figures of thought, coding literacy can empower practi-

tioners because they would no longer need be subject to

algorithmic structures and the dependencies created by

software, but would be able to open the black box called

“code” and reveal the way in which the algorithm was de-

veloped.37 Such readings include questions of the con-

struction and the poetics of algorithms. There are many

paths to solving digital problems. Some of them are as

monotonous as a twelve-lane highway crossing Califor-

nia’s San Francisco Bay, some have the exploratory poten-

tial of the country lane in Arno Schmidt’s Bottom’s Dream,

and some rare roads are even like the one still to be found

in Knut Hamsun’s The Growth of the Soil, nothing but a

path leading into the wilderness to transform it into a civi-

lized future. In short, in the classification and hermeneutic

reading of code, it is key to also investigate intentions,

formulations, and questions of style. For in order to rec-

ognize how users are used by software, it is necessary to

decode the construction and design of algorithms and be

able to subject them to critical reflection. This process of

the critical reflection of algorithms and the corresponding

dedication to coding literacy in the humanities at the most

basic level of the code is, in a nutshell, what “source code

criticism” entails.38

This novel method brings together classic scholarship and

historical source code analysis, linking a careful examina-

tion and preparation of the material,39 in this case algo-

rithms, with a theoretically grounded reading that includes

critical commentary of program structures and aims for

practical functionality. Conceptually, this approach in-

cludes on the one hand making source code available in

open access repositories such as GitHub or, more compli-

cated, through processes such as decompiling or reverse

engineering. Further, source code criticism entails the

critical reading of code, which, in its dynamic transforma-

tions, can be treated like historical sources that, not least

because of their many versions,40 require classification

and commentary.

The power of commentary

Commentary is a particularly central medial practice of

programming as a cultural technique. From its classic

application in theological exegesis and in legal practice

since late Antiquity, commentary has been used to hold

up, determine, and vindicate text. Whether the law is re-

ligious or judicial, commentary keeps it from becoming

inert or incomprehensible; it keeps arguments fluid by un-

derlining particular statements and bringing others into

the discourse.41 Commentary has a similar function in

philological text analysis, in the creation of critical edi-

tions, and in critique génétique.42 It points out where the

text is unclear or ambiguous, where there are variations

or deletions in the original, and so makes transparent the

genesis and construction of the text. And, finally, the ne-

cessity of commentary can be seen in the context of digital

37 Annette Vee, Coding literacy. How computer programming is changing writing (Software studies, The MIT Press 2017).
38 Krajewski, ‘Hilfe für die digitale Hilfswissenschaft. Von den Digital Humanities verspricht man sich wahre Wunder, obwohl sie nur eine einfache

Hilfswissenschaft sind’ (n 2).
39 Daniela Saxer, Die Schärfung des Quellenblicks. Forschungspraktiken in der Geschichtswissenschaft 1840–1914 (De Gruyter Oldenbourg 2014) 376 ff.
40 See Markus Krajewski, Versionskontrolle (Repositories of Markus Krajewski, githubcom/nachsommer 2020); Markus Krajewski, ‘branch, diff, merge.

Versionskontrolle und Quellcodekritik’ in Jörg Paulus, Andrea Hübener, and Fabian Winter (eds), Duplikat, Abschrift & Kopie. Kulturtechniken der

Vervielfältigung (Böhlau Verlag 2020).
41 Vismann and Krajewski (n 4) p.102; Krajewski and Vismann (n 15) 5-9.
42 Gérard Genette, Paratexte. Das Buch vom Beiwerk des Buches (Campus Verlag 1992); Almuth Grésillon, Literarische Handschriften. Einführung in die

critique génétique (Peter Lang Verlag 1999).

11

https://github.com


CRCL volume 1 issue 3 2025

Source Code Criticism 13

Listing 4: A Very Brief Example of Source Code Criticism

239 /* How to get surprised by your digital assistant?
240 Computers don't do well with true randomness (Rubin 2011). Therefore, the machine, for example, can't provide a

truly random card from a collection of index cards. Below, we explore four ways in which surprise can be
implemented, based on historic examples of designing serendipity...*/

241

242 public int getRandomInt(int max) {
243 /* This method selects a pseudo-random card from the card index collection.
244 It takes 'int max' as input, indicating the collection's current amount of cards. */
245 // The number to be determined will be chosen from a range between max and this minimal value
246 int min = 1;
247 // JAVA can now create a pseudo-random integer by this new object:
248 Random randomGenerator = new Random();
249 // With the result of randomGenerator this method then returns an 'accidentally' chosen number between 1

and the max amount of cards:
250 return randomGenerator.nextInt(max - min) + min;
251 }
252

253 // Inform the user directly about Mallarmé (1992) and his coup de dés:
254 System.out.println("The dice roll ended at " + getRandomInt(JSynapsen.recAnz));
255

256 /* Implementing serendipity with Aby Warburg
257 Since serendipity is even more difficult to implement and at the same time still a young field in information

science (McCay-Peet and Toms 2017), we create another unfolding opportunity for ‘controlled coincidence’ by
bringing Aby Warburg's ‘law of the good neighbour’ to bear (see Krajewski 2017, pp. 99-101): Since 1924, library
staff Gertrude Bing and Fritz Saxl, in the Kulturwissenschaftlichen Bibliothek Warburg (K.W.B.) in Hamburg
and later in London, set aside similar texts and corresponding thoughts for a given book by constantly
rearranging the shelves, thus creating new spatial connections for a book, transforming the previously remote into
propinquity through establishing short distances. This creates new links between heterogeneous units of text in
close proximity, which can be explored by the reader with the confidence that a knowledgeable hand has curated
the surrounding texts half by chance, half intentionally. We simulate this knowledgeable hand by computing
similarities between texts in three different ways:

258 1. by the number of matching terms with which the texts are tagged. The highest match leads to the greatest
spatial proximity.

259 2. by matching the full texts. The entire content of a book is examined with all other full texts for word matches
and assigned a characteristic value. Again, the texts with the highest similarities move close together.

260 3. by an analysis of the quotations in the book. The texts that are cited in the selected book and are also present in
the local database are included in the neighborhood, the highest citation frequency determines the closest
proximity.

261 The respective neighborhoods of the selected text can then be illustrated in the form of a sociograph in the
diagram. */

262

263 public String[] generateGoodNeighboursByHeadwords(string keyword) {
264 /* First we retrieve a list of headwords from the database associated with this card, identified by its

keyword like “warburg:1924” [...] This method returns a String array with a list of keyword, representing
the neighbourhood of the chosen card. */

265 System.reader.println("... This code continues and can soon be followed at
github.com/nachsommer/interlocutor ...");

266 }

construction and the poetics of algorithms. There are many paths to solving digital problems. Some of
them are as monotonous as a twelve-lane highway crossing California’s San Francisco Bay, some have the
exploratory potential of the country lane in Arno Schmidt’s Bottom’s Dream, and some rare roads are even

Manuscript submitted to ACM

12



CRCL volume 1 issue 3 2025

philology, which applies the methods of philology to soft-

ware.43

In this context, where programming has become a new

and innovative form of cultural technique, commentary

comprises all of these functions. Yet the method goes one

decisive step further to allow commentary its entire epis-

temic range. One of the greatest epistemic attributes of

commentary lies in the systematic transition between lev-

els. There is always a slight gap between text and com-

mentary. Crossing this gap causes an automatic shift in

perspective, combined with the necessarily distanced view

from the level of commentary upon the object of analy-

sis, whether literary text or code. This shift in perspective

includes a moment of self-reflection, in which the com-

mentary privileges a critical examination of the practice

or process of writing. By systematically moving between

levels, commentary creates an epistemic lever that allows a

continuously oscillating perspective on what is written and

as such represents an underexploited epistemological in-

strument. For commentary always acts as the unassuming

assistant of reflection, inviting and provoking explanation

and plausibilization, exegesis, and links to other texts. The

concept of source code criticism uses this oscillating per-

spective, between operative and explanatory segments, to

make the code’s commentary into the true text.

The fundamental distinction between code and commen-

tary also resonates with the difference between produc-

tion and execution of rules in the juridical realm which

Laurence Diver discusses in his brilliant paper on compu-

tational legalism.44 As one strategy on how to overcome

this gulf Diver advocates for analysing code as text, i.e.

considering code as an alterable document rather than

something unchangeable as it is given in the “ruleishness”

of the legalism paradigm wherein subjecting to the code

as law seems inevitable.45

The method of source code criticism hence implies two

things: on the pragmatic level, that software should not

only be executed, but also at times subject to a system-

atic critical reading, making its algorithms understandable

and plausible by means of explanations, reflections, ref-

erences, and if necessary, modifications. The aim of this

method is however not just transparency and intelligibility

for the sake of didactics alone, but an understanding of

program structures to improve coding literacy. Secondly,

on the epistemic level, which in turn goes far beyond the

effects intended by by Knuth’s (1974) principle of Literate

Programming, the method aims, by means of extensive

commentary, to narrativise, historicise, and discursivise

code. In a nutshell: the continuous commentary within the

code should become the true text, which means nothing

other than writing code as history (as indicated in listing 3).

In summary, we are talking about developing a model of

source criticism for the twenty-first century and aim to

achieve nothing less than setting a new standard for writ-

ing code in the humanities.

Accordingly, and not unimportantly, this understanding of

code possesses emancipatory potential. Source code criti-

cism means coding literacy at a level that enables reflection

on power structures in digital societies. Programming as

a cultural technique empowers scholars to understand,

classify, and consequently also write code, taking back a

certain agency in light of the current power of information

technologies.

An earlier version of this text was translated from the

German by Laura Radosh.

References

AlgorithmWatch, Automating Society Report 2019 (2019).

Alpaydın E, Machine learning. The new AI (MIT Press es-

sential knowledge, The MIT Press 2016).

Bajohr H, ‘Algorithmic Empathy: Toward a Critique of Aes-

thetic AI’ (2022) 30(2) Configurations 203.

43 See, e.g., Moritz Hiller, ‘Diskurs/Signal (II). Prolegomena zu einer Philologie digitaler Quelltexte’ (2014) 28 editio Internationales Jahrbuch für Edi-

tionswissenschaft 192; Thorsten Ries, ‘“die geräte klüger als ihre besitzer”: Philologische Durchblicke hinter die Graphical User Interface. Überlegungen

zur digitalen Quellenphilologie, Studie zu Michael Speiers “ausfahrt st. nazaire”’ (2010) 24 Editio Internationales Jahrbuch für Editionswissenschaft 149;

Montfort (n 30) as well as the the digital archival projects at the Deutsches Literaturarchiv Marbach.
44 Laurence Diver, Interpreting the Rule(s) of Code: Performance, Performativity, and Production (Published: law.mit.edu, MIT Computational Law

Report, 2021).
45 ibid.

13

https://www.dla-marbach.de/en/weitere-seiten/preservation-of-holdings/digital-preservationof-holdings


CRCL volume 1 issue 3 2025

Berry DM and Fagerjord A, Digital Humanities. Knowledge

and Critique in a Digital Age (Polity Press 2017).

Brown TB and others, Language Models are Few-Shot

Learners (Published: arxiv.org, arXivorg, May 2020).

Burnett DG, Trying Leviathan. The nineteenth-century New

York court case that put the whale on trial and chal-

lenged the order of nature (Princeton University Press

2007).

Cox G and McLean CA, Speaking code. Coding as aesthetic

and political expression (Software studies, The MIT

Press 2013).

De Mulder W and others, ‘Are Judges More Transpar-

ent Than Black Boxes? A Scheme to Improve Judicial

Decision-Making by Establishing a Relationship with

Mathematical Function Maximization’ (2021) 84(3)

Law and Contemporary Problems 47.

Diver L, Interpreting the Rule(s) of Code: Performance, Per-

formativity, and Production (Published: law.mit.edu,

MIT Computational Law Report, 2021).

Domingos P, The master algorithm. How the quest for the

ultimate learning machine will remake our world (Ba-

sic Books 2015).

E Gamma and others (eds), Design patterns. Elements of

reusable object-oriented software (Addison-Wesley pro-

fessional computing series, Addison-Wesley 1995).

Genette G, Paratexte. Das Buch vom Beiwerk des Buches

(Campus Verlag 1992).

Granger B and Pérez F, Jupyter: Thinking and Storytelling

with Code and Data (Published: /www.authorea.com,

Authorea, 2021).

Gregory CN, ‘Bentham and the Codifiers’ (1900) 13(5) Har-

vard Law Review 344.

Grésillon A, Literarische Handschriften. Einführung in die

critique génétique (Peter Lang Verlag 1999).

Hilgers Pv, ‘Ursprünge der Black Box’ in A Ofak and P von

Hilgers (eds), Rekursionen. Von Faltungen des Wissens

(Wilhelm Fink Verlag 2010).

Hiller M, ‘Diskurs/Signal (II). Prolegomena zu einer

Philologie digitaler Quelltexte’ (2014) 28 editio Interna-

tionales Jahrbuch für Editionswissenschaft 192.

Kirschenbaum M, Hello Worlds. Why humanities students

should learn to program (The Chronicle of Higher Edu-

cation, 2009).

— ‘What Is Digital Humanities and What’s It Doing in En-

glish Departments?’ (2010) 47(150) ADE Bulletin 55.

Knuth DE, ‘Computer Programming as an Art’ (1974)

17(12) Communications of the ACM 667.

— ‘Literate Programming’ (1984) 27 The Computer Jour-

nal 97.

Krajewski M, ‘Against the Power of Algorithms. Closing, Lit-

erate Programming, and Source Code Critique’ (2019)

23 Law Text Culture 119.

— ‘Hilfe für die digitale Hilfswissenschaft. Von den Dig-

ital Humanities verspricht man sich wahre Wunder,

obwohl sie nur eine einfache Hilfswissenschaft sind’

[2019] (85) Frankfurter Allgemeine Zeitung N4.

— ‘branch, diff, merge. Versionskontrolle und Quell-

codekritik’, in J Paulus, A Hübener, and F Winter

(eds), Duplikat, Abschrift & Kopie. Kulturtechniken der

Vervielfältigung (Böhlau Verlag 2020).

— Versionskontrolle (Repositories of Markus Krajewski,

githubcom/nachsommer 2020).

Krajewski M and Vismann C, ‘Kommentar, Code und

Kodifikation’ (2009) Frühjahr 2009 Zeitschrift für

Ideengeschichte 5.

Krysa J and Sedek G, ‘Source Code’ in M Fuller (ed), Soft-

ware studies. A lexicon (The MIT Press 2008).

Lanza E, Who Painted Rembrandt? Copyright and Au-

thorship of Two Rembrandt Portraits (Published:

www.thelegalpalette.com, The Legal Palette, 2018).

Lessig L, Code. Version 2.0 (2. Auflage, Basic Books 2006).

Manovich L, Software takes command (International texts

in critical media aesthetics, vol 5, Bloomsbury 2013).

J Mansfeld (ed), Die Vorsokratiker. Griechisch / Deutsch

(Erw. Neuausg., Nachdruck Auflage, Philipp Reclam

jun 2012).

Marino MC, Critical Code Studies (Published: electronic-

bookreview.com, electronic book review, April 2006).

— Critical Code Studies and the electronic book review: An

Introduction (Published: electronicbookreview.com,

electronic book review, 2010).

— ‘Reading exquisite_code’, in NK Hayles and J Press-

man (eds), Comparative textual media. Transforming

the humanities in the postprint era (Electronic media-

tions, University of Minnesota Press 2013) vol 42.

— Critical code studies (Software studies, The MIT Press

2020).

McCulloch W, ‘Recollections of the Many Sources of Cy-

bernetics’ (1974) 6(2) ASC Forum.

Mitchell JC, Concepts in programming languages (Cam-

bridge University Press 2004).

14



CRCL volume 1 issue 3 2025

Montfort N, Exploratory programming for the arts and hu-

manities (The MIT Press 2016).

Moretti F, Distant reading (Verso 2013).

Pasquale F, The Black box society. The secret algorithms

that control money and information (Harvard Univer-

sity Press 2016).

Passig K, ‘Fünfzig Jahre Black Box’ (2017) 71(823) Merkur

Deutsche Zeitschrift für europäisches Denken 16.

Pisano L, Il liber abbaci. Pubbl. da Baldassarre Bon-

compagni (Pisano: Scritti, vol 1, Tipogr delle Scienze

Matematiche e Fisiche 1857).

Punday D, Computing as Writing (University of Minnesota

Press 2015).

Pynchon T, Gravity’s Rainbow (Bantam Books 1974).

Ramsay S, Reading machines. Toward an algorithmic crit-

icism (Topics in the digital humanities, University of

Illinois Press 2011).

Ries T, ‘“die geräte klüger als ihre besitzer”: Philologis-

che Durchblicke hinter die Graphical User Interface.

Überlegungen zur digitalen Quellenphilologie, Studie

zu Michael Speiers “ausfahrt st. nazaire”’ (2010) 24 Edi-

tio Internationales Jahrbuch für Editionswissenschaft

149.

W Samek and others (eds), Explainable AI: Interpreting, Ex-

plaining and Visualizing Deep Learning (Lecture Notes

in Artificial Intelligence, vol 11700, Springer Interna-

tional Publishing 2019).

Saxer D, Die Schärfung des Quellenblicks. Forschungsprak-

tiken in der Geschichtswissenschaft 1840–1914 (De

Gruyter Oldenbourg 2014).

Schüttpelz E, ‘Die medienanthropologische Kehre der Kul-

turtechniken’ (2006) 6 Archiv für Mediengeschichte 87.

Siegert B, ‘Cultural Techniques: Or the End of the Intellec-

tual Postwar Era in German Media Theory’ (2013) 30(6)

Theory, Culture & Society 48.

— Cultural Techniques: Grids, Filters, Doors, and other Ar-

ticulations of the Real (Winthrop-Young G ed, Fordham

University Press 2015).

Sudeall L and Pasciuti D, ‘Praxis and Paradox: Inside the

Black Box of Eviction Court’ (2021) 74(5) Vanderbilt

Law Review 1365.

Vee A, Coding literacy. How computer programming is

changing writing (Software studies, The MIT Press

2017).

Vismann C and Krajewski M, ‘Computer-Juridisms’ (2007)

8(29) Grey Room Architecture, Art, Media, Politics 90.

Winthrop-Young G, Friedrich Kittler zur Einführung (Ju-

nius Verlag 2005).

— ‘The Kultur of Cultural Techniques. Conceptual Inertia

and the Parasitic Materialities of Ontologization’ (2014)

10(3) Cultural Politics 376.

— ‘Discourse, Media, Cultural Techniques: The Complex-

ity of Kittler’ (2015) 130(3) Moden Language Notes 447.

— ‘Siren Recursions’, in S Sale and L Salisbury (eds), Kit-

tler Now: Current Perspectives in Kittler Studies (Polity

Press 2015).

— ‘The Kittler Effect’ (2017) 44(132) New German Critique

205.

Wright M, Baughman SB, and Robertson C, ‘Inside the

Black Box of Prosecutor Discretion’ (2022) 55 UC Davis

Law Review 2133.

15



CRCL volume 1 issue 3 2025

A reply: to Markus Krajewski, “Source Code Criticism:
On Programming as a Cultural Technique and its Judicial
Linkages”

Katja de Vries • Senior Lecturer/Associate Professor, Uppsala University, Sweden.

katja.devries@jur.uu.se

Texts have an origin and a destination. Texts act, do things,

affect. When a text cannot be read any longer, the text be-

comes a dead letter. Sometimes texts do completely other

things than their author intended46. As Roland Barthes

(1967) famously wrote, the author is dead. Sometimes the

author is a diffuse origin that has little to do with the 18th

century romantic notion of individual creative genius; and

the reader is a nonhuman entity. A DNA sequence is a text

that, after being translated into messenger RNA, can be

read by ribosomes as building instructions. Who is the

author of the DNA text? Richard Dawkin’s (1986) blind

watchmaker?

In his brilliant paper ‘Source Code Criticism’ Krajewski

writes about the role of commentaries in relation to three

types of texts: literature, software and law. In literature and

law there is an extensive tradition of commentaries that

remove the “veil of opacity” (p. 3) and increases readability.

Both law and software are texts that will often be difficult to

read for a human reader. In the 11th century Roman legal

texts that had been ‘dead’ for many centuries were made

readable, and thus ‘revived’ into a living legal tradition, by

glossators who wrote commentaries in the side lines of the

actual texts.

Building on Knuth’s Literate Programming (1984) and

modern applications such as Jupyter Notebooks, where

developers can annotate their code with human-readable

narrative and explanations, Krajewski proposes a more

elaborate form of commentary on software code, “source

code criticism”. It should be underlined that this is some-

thing more far reaching than the commentaries of me-

dieval glossators making Roman Law accessible and ac-

tionable for use. Krajewski’s proposal is to create a new

type of profession: code critics producing software com-

mentaries in the tradition of critical humanities and en-

lightenment ideals of criticism, deconstruction, historiza-

tion and discursivization to enhance digital literacy and

agency.

In “listing 4” Krajewski exemplifies how such a critical

commentary could look like. This commentary on a piece

code that mimics the randomness of picking a card from a

deck, not only explains the meaning of the different bits of

code but is also a well referenced piece of academic work

on the history of serendipity and randomness, and its liter-

ary reverberations. It is a beautiful piece of text that I have

printed, framed and put on my wall as a textual work of art.

While “listing 3” also provides a historicizing explanation

(of which it is unclear to me if it would qualify as a basic

form of source code criticism or not), it is clear that “listing

4” truly epitomizes the genre.

However, the question is if source code criticism can be

more than beautiful scholarly work and a piece of textual

art, and potentially provide an answer to the problematic

opacity of artificial intelligence (AI) models, as Krajewski

seems to suggest.

The world is increasingly populated by AI-fuelled systems.

Transparency and interpretability, have been posited as

the panacea against becoming subjected to the algorith-

mic opacity (“computer says no”) and the unaccountability

and uncontrollability (the sorcerer’s apprentice) of such sys-

46 Katja de Vries, ‘GDPR as Hermeneutics’ in Common Erasures : Speaking back to GDPR (ETHOS Lab 2020).

16

mailto:katja.devries@jur.uu.se
mailto:katja.devries@jur.uu.se


CRCL volume 1 issue 3 2025

tems. However, transparency and interpretability are never

goals in themselves, and when operationalizing them the

question should always be: for whom and for what pur-

pose?47 Is it to empower a consumer, to inform a judge in a

liability case, to make a manufacturer more self-reflective,

or to motivate a decision towards a citizen?

To understand transparency in relation to AI-fuelled sys-

tems there are two ways of approaching them: either as

texts or as organisms.

Let’s start by looking at both law and software, in line with

Krajewski’s proposal, as texts. What are their parallels and

divergences in terms of origin and destination?

In terms of authorship there is an interesting parallel be-

tween those writing legal texts and software: there is a

certain impersonality, or as Savigny said in relation to the

Roman jurists: “fungibility”48, in the authorship of legal

commentaries that also exists in those writing software

code. Their output is more akin to a contribution to a grow-

ing coral reef than an individual literary work. Schiavone

describes Roman jurists as having “a common awareness

(. . . ) that they were participating, with their own intelli-

gence, decision after decision, writing after writing, in the

collective formation of a grand ontological architecture.”49

When looking at the software that makes, for example, a

contemporary mobile phone tick the biggest part of the

software is no longer attributable to an individual author

but is an accumulation of code that has undergone several

cycles of being open-sourced and closed, and is consti-

tuted of endless adaptations, over-writings, and cuts-and-

pastes.

However, when comparing legal texts with software code

created using AI, that is machine learning (ML), methods,

it is clear that the authorship of the latter is more indirect:

an algorithm that creates a model from training data can

be surprising or opaque to its developer in a way that a le-

gal text would not. The origin of ML software is somewhere

in between intentional human creation and evolutionary

emergence.

In terms of readership there is also a clear divergence. The

legal text always addresses a human reader. The totality

of the system of Law is a legal fiction that only exists in

its enactment by human lawyers, who put their legal cre-

ativity to work to construct arguments as to why the Law

says one thing or another.50 The law exists in its activa-

tion in legal narratives created by legal practitioners. In

contrast, the primary addressee of software code is always

a machine (or, to put it more precisely, the compiler that

translates the code into binary executable code). The text

works if the machine works. What is created is a system –

or: a machinic organism – that can do something. Human

understanding is important but secondary.

Transparency in relation to AI-systems as texts, that can

be critically commented upon, is an Enlightenment dream

from the era of books. Nobody can be against more digital

literacy, and source code criticism can contribute to that,

but AI-systems also need to be made transparent in a more

actionable way: as organisms that can be challenged in

interaction, counter-profiled51, and questioned.

References

Hildebrandt M, Smart Technologies and the End(s) of Law.

Novel entanglements of Law and Technology (Paper-

back edition, Edward Elgar 2015).

Knuth DE, ‘Literate Programming’ (1984) 27 The Computer

Journal 97.

Latour B, The making of law: An ethnography of the Conseil

d’Etat (Polity 2010).

Schiavone A, The Invention of Law in the West (Belknap

Press 2012).

Vries K de, ‘GDPR as Hermeneutics’ in Common Erasures :

Speaking back to GDPR (ETHOS Lab 2020).

— ‘Transparent Dreams (Are Made of This) : Counterfac-

tuals as Transparency Tools in ADM’ (2021) 8(1) Critical

Analysis of Law.

47 Katja de Vries, ‘Transparent Dreams (Are Made of This) : Counterfactuals as Transparency Tools in ADM’ (2021) 8(1) Critical Analysis of Law.
48 Aldo Schiavone, The Invention of Law in the West (Belknap Press 2012) 8.
49 ibid.
50 Bruno Latour, The making of law: An ethnography of the Conseil d’Etat (Polity 2010).
51 Mireille Hildebrandt, Smart Technologies and the End(s) of Law. Novel entanglements of Law and Technology (Paperback edition, Edward Elgar 2015).

17



CRCL volume 1 issue 3 2025

Author’s reponse

Markus Krajewski

I am much grateful to Katja de Vries’s inspiring comments

on my approach on commenting code. I feel well un-

derstood. I’d like to comment her comments with three

questions, in order to continue the lines of thoughts. Not

being a legal scholar I prefer to comment on the coding

part rather than on the law concepts.

Who writes code? (As a reply to who writes
law?)

Today, most of the code emerges as the effect of an inter-

play between one or more human authors, a vast collec-

tion of scripts which already exist and may have solved

the questions at stake, and a specific writing environment

(IDE) which offers help in researching documentation, ex-

amples of code snippets by others, as well as providing

standard solutions generated by large language models

(such as github Co-Pilot). The fact that in most of these

processes a human author is still involved, and the fact that

most of the code is written in - more or less - common En-

glish may serve as two indications that their development

and algorithms as such are to be considered a social arti-

fact. So, algorithms in most cased address humans rather

than machines, in order to be traceable, understandable,

and alterable. Otherwise algorithms could be written yet

in Assembler or other arcane code (like the programming

language ‘brainfuck’ which is so minimalistic that it aims

at not being understandable at all). Considering these con-

ditions of sofware production, it seems all the more urgent

to keep the algorithms - which always already aim to a

certain extent at humans - as transparent as possible at the

source code level.

Whom to blame?

In software development authors usually hide behind

pseudonyms. As a part of a large, world-wide distributed

community working on a specific code project like github,

one communicates with a whole zoo of strange creatures,

rarely announcing their real names, instead bearing awk-

ward signifiers like ‘commanderkotori’ or ‘jesuschrist’,

framed by generic profile icons. So who can be made re-

sponsible for a certain change of a line of code, who can

be contacted if the author is opaque, not graspable since

he/she/it (if ‘it’ is a bot) seems to be a secluded entity,

hidden behind many veils. Shortly after its introduction,

the git program which handles the versioning of widely

distributed software developers’ contributions, offered a

specific function called ‘git blame’ which allows to iden-

tify an author who made a certain change to the collec-

tive code in order to reach out to him/her to discuss the

change. With this feature, at least one veil of the differ-

ent layers wrapped around a person’s identity is removed

and one can enter into a discussion with the responsible

person. This adds, again, another social component to

the entangled interplay between code and human actions

in developing algorithms. And it undergirds the need to

write the code already not only for the machine, but also

for others to be able to grasp it. Otherwise, the coder will

frequently get ‘blamed’,

Why is Source Code Criticism rather technology than
art?

Based on the two levels of meaning of the Greek term texne

(art and technique), SCC aims at both levels equally: It is

art in the closest connection with technology, or conversely

an artful technique that helps to keep the path to under-

standing code and also AI open in particular. AI systems,

however obscure and incomprehensible the large models

may seem to even their developers and experts, are also

built with computer science techniques, i.e. the scripts

and blueprints are available as source codes that can be

dealt with using the same methods of SCC which, thus,

adds to the just emerging field of Critical AI Studies. To

the extent that not only the algorithms but also the scripts

for building the LLMs as well as an assessment of the un-

derlying data sets are subject to criticism, the black box

commonly called AI might lose its darkness. In this sense,

; also attempts to conduct a kind of educational program

18



CRCL volume 1 issue 3 2025

against human immaturity in their relation to machines on

a very pragmatic, neither artificial nor artistic level.

19


	Obscure acts
	Seeing through the Schwarzgerät
	Translation
	Streams
	Tiers

	The remedy: source code criticism
	The power of commentary
	Reply
	Response
	Who writes code? (As a reply to who writes law?)
	Whom to blame?
	Why is Source Code Criticism rather technology than art?




