h JOURNAL OF
CROSS-DISCIPLINARY RESEARCH

V IN COMPUTATIONAL LAW

Source Code Criticism
On Programming as a Cultural Technique

and its Judicial Linkages

Prof. Dr. Markus Krajewski*

Abstract

Despite the growing body of research into cultural techniques, questions regarding the digital, such as
the operation of algorithms, have remained underexplored in this field of media studies. I will meet this
desideratum by examining programming as a cultural technique. Similar to methods in Critical Code
Studies (such as those by Mark Marino) this intends to situate algorithms in a discursive and historical
context by elucidating code through systematic commentary, and making software transparent by critical
analysis. The following is an attempt to shine some light into the black box, first by examining the varying
modes that create inaccessibility, making it difficult to understand and reconstruct code, and secondly,
by proposing a method that could remediate the opacity of algorithms. My approach aims to narrativise,
historicise, and discursivise code by means of extensive commentary, in order to provide a lever that
opens the

Keywords: Source Code Criticism, Critical Code Studies, Cultural Techniques, Programming as a Cultural
Technique, Commentary, Commentaries as a Judicial Practice, Commentaries as a Philological Practice,
Commentaries as a Coding Practice, Hermeneutics of Code

Replier: Katja de Vries ® Senior Lecturer/Associate Professor, Uppsala University, Swe-
den. katja.devries@jur.uu.se.

Journal of Cross-disciplinary Research in Computational Law
© 2025 Markus Krajewski
DOI: pending
Licensed under a Creative Commons BY-NC 4.0 license
www.journalcrcl.org

* Professor of History and Theory of Media, University of Basel, markus.krajewski@unibas.ch

mailto:katja.devries@jur.uu.se
https://creativecommons.org/licenses/by-nc/4.0/
https://journalcrcl.org
mailto:markus.krajewski@unibas.ch
https://journalcrcl.org

CRCL volume 1 issue 3

2025

Obscure acts

It is possible to sue your neighbour if you are unable to
come to terms, and you can even bring a whale to trial.!
But it is much more complicated to prosecute algorithms.
A great deal of effort is required to bring a piece of code to
trial. First, its authorship is not necessarily linked to a legal
person. Itis also difficult to clarify the facts and understand
how the software was built and how it runs — never mind
the challenge of changing the algorithm itself.? There is
a ubiquitous but nevertheless obscure metaphor used to
denote the difficulty of understanding an algorithm’s func-
tion, steps and our ability to grasp its effects. To express
our helplessness in the face of the oversized influence of
algorithms, people usually speak of a “black box” within
which the software unfolds its functions.? Something, data
X, for example the words “I am”, falls into an opaque recep-
tacle where it is processed without outside observation,
so that almost nobody knows how in the end data Y, for
instance the finished sentence “not Stiller”, has found the
light of day.

The following is an attempt to shine some light into the
black box, first by examining the varying modes of creating
inaccessibility that make it difficult to understand and re-
construct code. This paper/article then proposes a method
that could act as a remedy for the opacity of algorithms.
First, however, we shall look at the historical development
and linguistic effects of the metaphor of the black box, in

particular in comparison to the law, which some have sug-

gested is structurally similar to the functioning of software
code.*

In his history of the black box, Philipp von Hilgers recon-
structs two complementary foundational moments for the
term; one that is material and connected to a physical
object and one that is conceptual and was used in the bud-
ding field of cybernetics. The idea of the black box as a
technical device whose functioning we do not understand
can be dated very precisely to an instance of technologi-
cal transfer. In September 1940, the British chemist and
academic executive Henry Tizard sent the blueprints and
schematics of a new kind of radar equipment developed in
Great Britain, along with a prototype of this “magnetron”,
to a research and development team at MIT in Cambridge,
Massachusetts. The black anodized magnetron was sent in
an equally black metal deed box that became eponymous
for a technical device whose input and output is known,
but whose technical signal processing remains obscure
and opaque.® The metaphor of the black box began with
such a box (the magnetron) transported within another
black box, whose function in this first transmission (from
England to the USA) was quite clear, even if the object itself
was encapsulated. “The black box is not a package that
one need only open to see its content. It contains more
black boxes.”®

Just a few years later, the term “black box” was established
as a concept in the newly forming field of cybernetics. The
term took root at an informal meeting at the Institute for
Advanced Study in Princeton, New Jersey on January 6-7,

1 See David Graham Burnett, Trying Leviathan. The nineteenth-century New York court case that put the whale on trial and challenged the order of
nature (Princeton University Press 2007).

2 One case in which legal recourse was possible occurred in Finland, where a man from a rural area was denied a microcredit by an algorithm on the
basis of that characteristic, see AlgorithmWatch, Automating Society Report 2019 (2019) and Markus Krajewski, ‘Hilfe fiir die digitale Hilfswissenschaft.
Von den Digital Humanities verspricht man sich wahre Wunder, obwohl sie nur eine einfache Hilfswissenschaft sind’ [2019] (85) Frankfurter Allgemeine
Zeitung N4, 119-121.

3 See, as an example that is almost a diagnosis of our times, Frank Pasquale, The Black box society. The secret algorithms that control money and
information (Harvard University Press 2016).

4 See Lawrence Lessig, Code. Version 2.0 (2. Auflage, Basic Books 2006); and for a counterargument, with a nuanced look at legal elements of
computerized systems Cornelia Vismann and Markus Krajewski, ‘Computer-Juridisms’ (2007) 8(29) Grey Room Architecture, Art, Media, Politics 90; for
the description of certain legal processes as black boxes see, e.g., Megan Wright, Shima Baradaran Baughman, and Christopher Robertson, ‘Inside the
Black Box of Prosecutor Discretion’ (2022) 55 UC Davis Law Review 2133; Lauren Sudeall and Daniel Pasciuti, ‘Praxis and Paradox: Inside the Black Box
of Eviction Court’ (2021) 74(5) Vanderbilt Law Review 1365; Wim De Mulder and others, ‘Are Judges More Transparent Than Black Boxes? A Scheme to
Improve Judicial Decision-Making by Establishing a Relationship with Mathematical Function Maximization’ (2021) 84(3) Law and Contemporary
Problems 47.

5 Philpp von Hilgers, ‘Urspriinge der Black Box’ in Ana Ofak and Philipp von Hilgers (eds), Rekursionen. Von Faltungen des Wissens (Wilhelm Fink Verlag
2010) 143-145.

6 Kathrin Passig, ‘Flinfzig Jahre Black Box’ (2017) 71(823) Merkur Deutsche Zeitschrift fiir europdisches Denken 16, 23.

CRCL volume 1 issue 3

2025

1945, where participants, including Norbert Wiener and
John von Neumann, made use of the metaphor. Warren
McCulloch, one of the intellectual fathers of artificial intel-
ligence, remembers a passionate duel between von Neu-
mann and Wiener, which he dated incorrectly as occurring
in the winter of 1943-4.” The two debated about ways to
discover the function of a black box — in this hypothetical
case, war machinery captured from the Germans — with-
out opening it. After all, it is paradoxical. Once a black box
is opened and light falls into it,the contents then become
transparent and the ‘black’ disappears. One somewhat
delayed result of the arguments at Princeton, alongside
the series of Macy Conferences that began the following
year, was the 1956 Dartmouth workshop that sparked the
development of artificial neural networks (ANN). We re-
turn to ANN an architecture of knowledge, below. In the
meantime, it is important to note that the metaphor of
the black box had its start in a debate about the opacity of
German war-booty — an obscure box whose function can-
not be determined directly, but only through the detour of
the experimental input and output of varying electronic

currents or data streams.

Von Hilgers also points out that the concept of the black
box has advantages for computer scientists and software
developers, especially with a concept known in object-

oriented languages as “encapsulation”.?

As long as the
interface is clearly defined and input and output are spec-
ified, a great deal of time can be saved by not having to
examine the encapsulated methods and algorithmic struc-
tures. This means that hidden elements within programs
and software libraries, when they have a clearly defined use
and explicit application programming interfaces (API), can
remain closed regarding their architecture and may have
obscure internal functions. As encapsulation in software
libraries, repositories, and packages is understood as stabi-

lization, it may not necessary to reveal their construction.

Accordingly, in software development, the Schwarzgerét or
what Thomas Pynchon described as the terminus techni-
cus for the black box in Gravity’s Rainbow”® —is meant less

to obfuscate and more to simplify by reducing complex-

ity.

The analogy with written laws, whose application and in-
terpretation is often more interesting than the details of
their construction, genesis, and function, is easily appar-
ent. Although their original wording is easily accessible,
it can still be claimed that the text of laws is covered by
a veil of opacity. Their foundation is encapsulated: the
constitution is not explicitly mentioned in the wording of
individual laws, just as pre-existing methods, or the in-
tended functions, are encapsulated in software libraries,
and equally as impossible to reach. And despite their pub-
lication, laws also exclude something else inscribed in their
functioning, for example the issues that played a role in
their writing. Which lobby interests played a part in formu-
lating the text? What are its implicit assumptions? How do
the technicalities function and do they prove themselves
when used? Although their text is open to the public in
full, in many ways — and not only for laypeople — laws

operate in an opaque manner.'?

Seeing through the Schwarzgerit

The power of algorithms results from a variety of opacities
that manifest themselves in different forms. In a first step
that makes absolutely no claim to be a systematic survey
of the field, a heuristic approach helps us delineate four
cases that show why algorithms are so difficult to grasp and
how the respective problems can be linked to a legislative

context.!!

7 See Warren McCulloch, ‘Recollections of the Many Sources of Cybernetics’ (1974) 6(2) ASC Forum and, for the correction of the date Hilgers (n 5) 150,

note 42.

8 See, e.g., John C Mitchell, Concepts in programming languages (Cambridge University Press 2004) 418, 242; see also Erich Gamma and others (eds),

Design patterns. Elements of reusable object-oriented software (Addison-Wesley professional computing series, Addison-Wesley 1995) 42 ff.

9 In this case, the load encapsulated in the mysterious weapon turns out to be human: Gottfried shrouded in Imipolex G, see Thomas Pynchon, Gravity’s

Rainbow (Bantam Books 1974).

10 Asiitis, e.g., to a certain degree in the decision making of eviction courts in Georgia, as analysed by Sudeall and Pasciuti (n 4).

11 On other cases meant to prevent penetration of the black box and the corresponding reasons for the unintelligibility of software or the ubiquitous

slowness of thought, problems with synchronization and the complexity and size of code, etc. see Passig (n 6).

CRCL volume 1 issue 3

2025

Translation

As a problem-solving method, algorithms are in fact based
on a triad of functionality, understandability, and ele-
gance.!? But these fundamental principles are not neces-
sarily mirrored in every fragment of code. It is difficult to
live up to this ideal under the pressure to find a solution
and with the limited resources that dominate in day-to-day
working life. More importantly, in most cases algorithms
resist readability and hence replicability, because not all
software makes its source code, or the sequence of individ-
ual commands written in “plain text”, [Klartext]'> available
to a higher programming language. Yet only when the
source code is available can, depending on the language
used, the logic of the program be decoded, with more or
less effort depending on how abstract the commands, data
structure, and routines are: Are they written in English or
in Mandarin? Are the descriptions consistent, common,
and meant to be understood? Furthermore, one and the
same program code can be almost impossible to decipher
when it does not use generally understandable terms for
its commands (see Listings 1 and 2), but its algorithm is
immediately easier to comprehend as soon as such terms

are inserted (Listing 2).

Not until a second step, compiling, where the translation
of the source code into the binary code that the machine
can execute, is the algorithm further obfuscated or locked
into a black box that cannot easily be opened in retrospect.
By translating the algorithm into executable code (turning
it into a *.bin or *.exe file), it is encapsulated and locked

into its box where it can no longer be classified.'*

There is a legal equivalent to closing code in this way, one
that goes back to juridical practice in the Roman Empire
in the sixth century CE: the pandects, to this day one of the
fundaments of civil law. This compendium or digest, as it
is also called, of varying legal cases and commentary acted
as a memory of judgements and decisions and at the same
time as a set of rules. At the behest of the emperor Jus-

tinian in 533 CE, these materials were brought together in
abook. This codex bundled the opinions of chosen Roman
legal scholars of the Republic and the Empire and codified
them into law. In the process, most lengthy commentaries
were left out when the book’s cover was shut — the lit-
eral meaning of codifying — and its contents elevated into

law.

-
private long rhksog(int Imvlkmvlsdf) {

if (Imvlkmvlsdf <= 1)
return Imvlkmvlsdf;
return rhksog(Imvlkmvlsdf - 1) +
rhksog(Imvlkmvlsdf — 2);

private long asdfasdfsadffasfsad(int herttjrtzhtr) {
long gdgijimkfe = 0;
for (int dsfidsjfi = 0; dsfidsjfi <= herttjrtzhtr;
dsfidsjfi ++)
gdgijimkfe = rzsretsert(herttjrtzhtr) ;
return gdgijimkfe;
}

Listing 1: one and the same code in two styles: abstract at the
top. ..

private long fibo(int n) {
if (n<=1)
return n;
return fibo(n - 1) + fibo(n - 2);

private long fiboWithoutRecursion(int number) {
longj = 0;
for (int i = 0; i <=number;i++)
j = addFibonacciS();

return j;

Listing 2: ... and for hermeneuts below.

12 Donald E Knuth, ‘Computer Programming as an Art’ (1974) 17(12) Communications of the ACM 667, 670 informed by Jeremy Bentham’s utilitarian

concept of taste and style, goes even further in his software development and aims for beauty. Bentham, by the way, coined the term codification for the

legal practice in an anonymous pamphlet, published in 1776, see Charles Noble Gregory, ‘Bentham and the Codifiers’ (1900) 13(5) Harvard Law Review

344, 344

13 See Geoffrey Winthrop-Young, Friedrich Kittler zur Einfiihrung (Junius Verlag 2005) 59, 62 ff.
14 joasia Krysa and Grzesiek Sedek, ‘Source Code’ in Matthew Fuller (ed), Software studies. A lexicon (The MIT Press 2008); Markus Krajewski, ‘Against
the Power of Algorithms. Closing, Literate Programming, and Source Code Critique’ (2019) 23 Law Text Culture 119, 123

https://github.com/nachsommer/sourcecodecriticism/blob/main/FibonacciObfuscated.java
https://github.com/nachsommer/sourcecodecriticism/blob/main/JFramingFibonacci.java

CRCL volume 1 issue 3

2025

The commentaries became (illegitimate) explanations that
lacked the force of law.!®

But such enclosing or codification is by no means irre-
versible. Just as Roman law was renewed or modified
from time to time, there are tools with which translation
into unreadable machine code can be at least partially re-
versed. Even executable code can be restored to its original
state, not least because a computer is a deterministic ma-
chine. This practice is called “reverse engineering” and
restores the example in Listing 1 to the state shown in fig-

ure 1.

What figure 1 shows, at a glance, is that the code no longer
seems as graspable as before: it is quasi naked. It lacks the
commentary and explanatory structures visible on the left
(displayed in light grey colour) -- for a good reason. The
machine, resp. the compiler, does not read in the commen-
tary as it contains no commands relevant for executing the
code. The compiler, of course, follows a different mode of
reading than the user trying to understand the source code.
That is, the compiler only interprets the commands — the
algorithmic structures of the code — whereas the human
user reads at least on two levels, the algorithmic structure
as well as the commands intended to elucidate, expand
and explain what is laid down in the commands. All that
has been reconstructed by the practice of reverse engi-
neering are these functional elements, methods, and data
structures, though with their original denomination; the
method fiboWithoutRecursion(n) is still meaningful, in-
stead of being renamed as opgdnwdukbsdkfbue(n) which
would imply a further escalation of obfuscation. The sub-
stitution of meaningful terms with nonsense strings in
legal contexts would, probably, not render any helpful ju-
ridical practice.

What could be the legal equivalent of reverse engineer-
ing? An amendment? More likely an appeal, which, like
reverse engineering, requires considerable additional ef-
fort. A decision is disputed and a new court must try the
case again from a new perspective. The law must be in-
terpreted one more time in order to reach the same or a
different verdict. That in turn means again looking one by

one at each procedural step, micro-decision, partial argu-

ment, method, and interpretation, all of which must be
reread and reconstructed to adjust the argumentation and

conclusions.

Though analogies are the fundamental method when gen-
erating new decisions in common law, the analogy be-
tween black boxes and obfuscation in algorithms and
in law, naturally, is limited. One major objection might
be, that in order to execute an even very obfuscated and
encapsulated—code snippet — every single step must be
made explicit to the compiler. Nothing is hidden or ob-
scured in the most far-fetched modules of software li-
braries, nothing will be kept encapsulated or in com-
pressed software libraries during compilation, since the
compiler needs to know what to do by pursuing all the
commands and its references line by line. If encapsula-
tion in software development should resemble the gating
and cutting off of concrete law cases during the process of
abstraction in the civil law, here, the black box metaphor
also fails, because for ruling according to an established
abstracted law one does not need to know all the cases
that have led to the formulation of this certain statute. The
compiler, however, must be fed with all the commands
hidden in encapsulated modules, the most abstract as well
as the most concrete. In the end, both systems, code com-
pilation as well as jurisdiction operate on a transparent ba-
sis where all the codes must be — at least theoretically —
available and made explicit, i.e. all the information is avail-
able to the highest instance.'® The ‘normal’ user, however
— whoever that is in the interaction with the computer/the
law — can be excluded from this transparency by strategies
of obfuscation, encapsulation, and codification.

Streams

Another factor that makes algorithms inaccessible is more
recent: the infrastructure of digital worlds. Data streams
are processed chiefly on the internet. Data, including ex-
ecutable codes, are no longer require local storage. They
are relocated to the cloud or to another external location
from where they can be fetched as needed, that is to say
‘made available’ in the form of a local data stream. This
is an ephemeral process — in keeping with the nebulous
cloud metaphor. There is no explicit, — or for the user,

15 See Markus Krajewski and Cornelia Vismann, ‘Kommentar, Code und Kodifikation’ (2009) Friithjahr 2009 Zeitschrift fiir Ideengeschichte 5, 7 ff.

16 For the compiler as sovereign, i.e. the most powerful instance in coding, see Vismann and Krajewski (n 4) 97 f.

CRCL volume 1 issue 3

2025

PEE% D
..va (ils pom.xml [Synapsen] X [JSuchen.j

273
274
275
276
277
278 erate ecurse divine" (L Peter Deuts
279 Results.append("In generation " +i + " there are " + fibo(i) + " rabbits.\n");

280 Yelse {

281 Tl ethot e e nple

282 Results.append('In generation " +1+ " there are " + fiboWithoutRecursion(i) + " rabbits.\n");
283 }

284 }

285
286
287 -}
288
28901 private long fibo(int n) {|
290 g
291
292
293
294
295
296
297
298
299 e e self. Before re
300 : :
301 e generation of rabbits

302
303
304 }
3e5-- 1}

<defauit config>)~ Y’

B DB G- ke Co G

X |4 transLatejava X [JFram

=1

x| B Jimportjava X [JAccentComposer

clearResults();

) Navigator

for (int i = 1; i < jSliderl.getModel().getValue(); i++) {

if (recursively.isSelected()) {

=1

3 Projects () Files] Services

this.setCursor(Cursor.getDefaultCursor());

if(n<=1){
return n;
}else {

return fibo(n - 1) + fibo(n - 2);

@ fibo

IS Git Repository Browser [Output Q Search Results (i) Notifications

(& fibonacel.JFramingFibonacci

PEHES D <detautcenti> | Q- F F D B B bl G Co

O .va iz pom.xmi [Synapsen] X [JSuchenjava X [Jimportjava X [& JAccentComposer.java X [d transLate.java * | [JFramingFib
£ 193 [private void calculateSequence() {

5 194 setCursor(Cursor.getPredefinedCursor(3));

&/ 195 clearResults();

[Projects () Files] Services @

o

196
197

for (int i = 1; i < this.jSlider1. getModel().getValue(); i++) {
if (this.recursively.isSelected() {

198 this.Results.append(“In generation " +i+ " there are " + fibo(i) + " rabbits.\n");
199 Yelse {

200 this.Results.append(“In generation " +i+ " there are " + fiboWithoutRecursioni) + " rabbits.\n");
201)

202 H

203 setCursor(Cursor.getDefaultCursor());

204 -)

205

206 [private long fibo(int) {

207 if(n<=1)

208 return n;

209 return fibo{n - 1) + fibo(n - 2);

210 -)

211

private void clearResults() {
this.Results.selectAll();
this.Result:

}

Result: i));

212
213
214 ", 0, thi
215

216,

217 public static long fiboWithoutRecursion(int number) {
218 long j = 0L;

219 for (inti = 0; | <= number; i++)

220 }= addFibonaccis(i);

221 returnj;

222)

223

224 [
225

public static long addFibonaccis{long n) {
if (n==0L)

26 return OL:

& fibonaco. FibonacciRevEng > @) calculateSequence

5] Git Repository Browser [Output @ Search Resuits (i) Notifications

Figure 1: The same program, left in the original, right reverse engineered

transparent — local storage location planned for such data
streams. Whatever has no location remains inaccessible,
unaddressable, and hence obscure. It is impossible to get
hold of data without an address. The algorithms are encap-
sulated again, this time in data streams that are not fully
available, but work locally in real time and then disappear
again. Platforms like Spotify or Netflix act due to this logic;
they provide their data as streams not to be stored and ac-
cessed or even owned (in the legal sense) on the user’s local
file system. Instead, they are handled as ephemeral enti-
ties. Once watched or listened to they disappear, without
being further analysed or scrutinized.

Such difficulties can already be found in presocratic frag-
ments: We cannot step twice into the same river.!” When
dealing with data streams, the fundamental problem again
remains their inception. Where can we begin to under-
stand a data stream, when we do not know what was at
the onset? Without a beginning, no code can start or be
executed, never mind restored to its original state. With
streaming, both the run time and the starting time of the
code’s execution become crucial.

Tiers

A completely different type of inaccessibility as regards
algorithms can be found in an issue that is currently at
the fore of debates in and on computer science and its
sociotechnical impact: artificial intelligences and their so-
cial, habitual, ethical, economical, and last but not least
legal consequences. The primary difficulty here — in con-
trast to the case of conventional software architectures and
systems — is that not even the best computer scientist can
explain exactly how decisions are made within artificial
neural networks (ANN), much less reproduce the results
on a micro or macro level. This is due to the architecture of
ANN, which have a memory system of artificial neurons as
an electronic simulation of the human brain. This mem-
ory must be trained with data — whether images, texts,
or voices — until enough knowledge has been gathered
of the, so to speak, genus and species of the input data.
On a purely technical level, this knowledge is saved in vec-
tor spaces as probabilities of individual nodes that react
with other nodes at an input signal. When the training
is finished, the knowledge is frozen: the so-called model
can then only react to user queries by reproducing the in-
formation fed to its ‘brain,’ but not by incorporating new

17 Jaap Mansfeld (ed), Die Vorsokratiker. Griechisch / Deutsch (Erw. Neuausg., Nachdruck Auflage, Philipp Reclam jun 2012). Fragment 91, see also 12,

49a.

CRCL volume 1 issue 3

2025

information during the interaction. However, the model
does not always react the same way to specific input, but
differently and to a certain degree unpredictably, because
the decision path through the layers of artificial neurons
is probabilistic and does not operate with fixed trajecto-
ries or certainties in an if-then structure. The system’s

architecture follows a “connectionist paradigm”'®

in which
individual artificial neurons can come together in a variety
of different constellations. That means that the same input
into an ANN or a black box will prompt different results,

even in processes that follow in quick succession.

The best legal analogy for an ANN might be an enormous,
many-tiered, closed digest. This digest contains myriad
cases, judgments, and legal trials, but these are not verba-
tim nor systematically ordered with a registry and index.
Instead, it is jumbled and fragmented, every fragment is
given a different relevance regarding how it connects to
other, neighbouring, particles and again to their neigh-
bours. If we take this analogy further, such a book of law
proves to be less than useful, for every (verbatim) input de-
livers a different output as a result of the micro-decisions
that depend statistically on one another and that take place
at every node of the hidden network layer, together leading
to ever-different verdicts.

The architecture of an ANN, which enables so-called “deep
learning” (a recursive process in which neural networks
are deployed that are linked to themselves and to lower
and higher tiers or, simplified, architectures with built-in
error correction),'? is made up of more than just its opera-
tion within a black box. A typical ANN — in the tradition
of its basic building block, the perceptron — consists of
three tiers: input, a hidden layer, and output. And this hid-
den layer, which is made up out of many interconnected
layers of artificial neurons,? represents as it were — as in

its primal scene, the transport from Great Britain to Mas-

sachusetts of a black magnetron in a black box — the black
box in the black box.

The knowledge of an ANN is therefore not only encapsu-
lated in many black boxes, it is also atomized or dispersed
numerically in vector spaces, distributed among many tiny
electronic memory elements (artificial neurons), linked by
nothing other than a statistical value as a the probability of
transition to their respective neighbours and neighbours
of neighbours. At the centre of the encapsulated black box
of artificial neural networks is fog, a particularized form of
random micro-decisions that deliver remarkable achieve-
ments despite their fragmentation.?!

The problem of decision making in black boxed Al systems
has long been a topical issue, ever since the first trials of
autonomous cars ran into legal difficulties that remain un-
resolved to this day: Who decides how to react in a harm-
ful traffic situation when all options are bad, the car, the
driver, the algorithm, the manufacturer, the software de-
veloper? And who bears the responsibility for the decision?
This problem is exacerbated by the aforementioned un-
predictability with which an ANN makes its decisions. This
can only be measured by certain test procedures in which
a whole series of similar decisions are also documented.
However, this contingency of ANNs can also be helpful, for
instance when it comes to the problem of legal uncertainty.
If judges, like ANNSs, are viewed as black boxes, the path
of their decision making could be made transparent in a
manner similar to the case of ANNSs, in that judges make
their alternatively considered options explicit as well.??
The — to a certain degree — unpredictable functioning of
a black box would thus be transformed from problem to
virtue.

Behind this, however, lies an even more fundamental prob-
lem of understanding: If not even computer scientists can
reconstruct the functioning of their own systems, which

18 Hannes Bajohr, ‘Algorithmic Empathy: Toward a Critique of Aesthetic AI’ (2022) 30(2) Configurations 203, 219 ff.
19 See Ethem Alpaydin, Machine learning. The new AI (MIT Press essential knowledge, The MIT Press 2016) 85 ff.
20 pedro Domingos, The master algorithm. How the quest for the ultimate learning machine will remake our world (Basic Books 2015) 101.

2L For a visual example see Emily Lanza, Who Painted Rembrandt? Copyright and Authorship of Two Rembrandt Portraits (Published:

www.thelegalpalette.com, The Legal Palette, 2018); for textual examples see the results of GPT-3, designed by Tom B Brown and others, Language

Models are Few-Shot Learners (Published: arxiv.org, arXivorg, May 2020); e.g. with results like this: https://www.gwern.net/GPT-3, recently optimized

for dialogue with ChatGPT.

22 See De Mulder and others (n 4) 48,63, who also discuss the more general aspects of black boxes in jurisdiction and its similarities to artificial neural

networks.

https://www.gwern.net/GPT-3

CRCL volume 1 issue 3

2025

still operate within deterministic machines, how might a
detailed critical understanding of this technology be pos-
sible? The problem, it must be said, is also recognized
within the field of computer science and is currently re-
ceiving much attention under the denotation “explainable
AI” (XAI).? One central finding is that while a black box
is operating, it can in principle no longer be opened —
like Schrddinger’s cat in the box. Transparency can be cre-
ated solely on the conceptual level, which leads us back to
source code. Only on this concrete level, that is before the
actual execution of the code, can decision-making paths
be understood or reconstructed. But a certain amount of
preparation is needed tto be able to work on source code.
The path to understanding — in classical tradition — fol-
lows the mileposts of a philological and historiographical
virtue: reading the sources. What does this mean con-

cretely?

The remedy: source code criticism

Even code that is freely available is not necessarily easily
readable. Source code that is not behind barriers or hidden
by other obfuscation or nebulization still resists readers
other than geeks, hackers, and nerds. Yet it is more ur-
gent than ever that genuine computer literacy exist outside
these groups. In the humanities and in law, scholars must
master and pass on the skills necessary to research not
only complex philosophical, legal, and literary texts, but
also code — from a critical perspective.

This is the starting point of programming as a cultural
technique — my proposal for a new methodology for deal-
ing with code beyond the computer sciences. It consists
of a process I here call “source code criticism”. The code
of a software project should be brought together with ex-
tensive explanatory commentary to form a work that is a
combination of text and code and that, in the best-case
scenario, can present its results in the form of both a book

on coding with its cultural explanation and as a software
application.

Cultural techniques, with their interaction of targeted
physical gestures and the use of objects such as tools,
instruments, or other media, act in a manner that has a
specific cultural impact. Research on cultural techniques
therefore investigates the practices of those processes that
are constitutive for culture in relation to their mediality,
including the procedures, gestures, and tools involved in
their historical development as well as their cultural and
epistemic foundations.?* Cultural techniques always have
an additional aesthetic component that goes beyond their
functionality alone, something that Donald Knuth for ex-
ample demands of programming — to take account of
questions of style, elegance, and not least beauty when

developing code.

Despite increased interest in and the growing institutional
importance of research into cultural techniques,?® to date
the issue of digital practices such as algorithm develop-
ment and how it functions as a cultural technique has been
mostly ignored. This desideratum must be met by examin-
ing coding as a cultural technique. This includes not only
the ability to read and write code or develop it for daily soft-
ware needs, but also to subject code to a critical analysis in
its discursive and historical contexts. In the future, this skill
will play a key role not only for scholars in the humanities,
but also for legal scholars, because these competencies
will be needed in more people than just professional soft-
ware developers, computer engineers, interface designers,
and, not least, the self-learning machines themselves. The
actions and design of said machines and the invention and
training of algorithms must be accompanied by critical
reflection and a broader understanding. Only then will it
be possible to demystify the spectre of the power of the
algorithms, to delimit and to analyze them.

23 See, e.g., Wojciech Samek and others (eds), Explainable Al: Interpreting, Explaining and Visualizing Deep Learning (Lecture Notes in Artificial

Intelligence, vol 11700, Springer International Publishing 2019).

24 See Frhard Schiittpelz, ‘Die medienanthropologische Kehre der Kulturtechniken’ (2006) 6 Archiv fiir Mediengeschichte 87; Bernhard Siegert, ‘Cultural
Techniques: Or the End of the Intellectual Postwar Era in German Media Theory’ (2013) 30(6) Theory, Culture & Society 48; Bernhard Siegert, Cultural
Techniques: Grids, Filters, Doors, and other Articulations of the Real (Geoffrey Winthrop-Young ed, Fordham University Press 2015).

25 See, e.g., Geoffrey Winthrop-Young, ‘The Kultur of Cultural Techniques. Conceptual Inertia and the Parasitic Materialities of Ontologization’ (2014)
10(3) Cultural Politics 376; Geoffrey Winthrop-Young, ‘Discourse, Media, Cultural Techniques: The Complexity of Kittler’ (2015) 130(3) Moden Language
Notes 447; Geoffrey Winthrop-Young, ‘Siren Recursions’ in Stephen Sale and Laura Salisbury (eds), Kittler Now: Current Perspectives in Kittler Studies
(Polity Press 2015); Geoffrey Winthrop-Young, ‘The Kittler Effect’ (2017) 44(132) New German Critique 205.

CRCL volume 1 issue 3

2025

Codes can only be domesticated through comments.2®
Concretely, for scholars of text this means learning to
take a critical distance to algorithms. It means learning
to decode and segment them in order to investigate the
way in which they function, their impact and their lin-
guistic particularities, their design and style in order to
classify them according to historical, legal, cultural, or
political standards. This approach is slightly different
from that taken in the field of software studies as prop-
agated by Matthew Kirschenbaum,?” Stephen Ramsay,?®
Lev Manovich,?® or Nick Montfort.3°. The aim is also and
importantly to strengthen the digital literacy of scholars in
the humanities.3! Mark Marino in particular, in develop-
ing the innovative field of Critical Code Studies, has shown
how a discursive reading of algorithms can function, for
example in his close readings of the collaborative story
exquisite_code,32 and, more recently, of Friedrich Kittler’s
code production.3?

By now it should be clear that instead of quantitative sta-
tistical or numerical analyses that look, for example, for
word frequency (a method used all too often in the dig-
ital humanities),2* programming as a cultural technique
instead aims to transfer a core competency of the humani-
ties, critical reading, to the digital world. This means being
able not only to understand, classify, and modify algo-
rithms, but also to be able to grasp and comment on them
using the termini, theories, concepts, and dispositifs of
literary criticism. This form of contextualization is what
makes it possible to deconstruct code as if it were a liter-
ary text. In marked contrast to this novel approach, the

opposite idea — designing software as if it were literature
— is by no means new. Donald E. Knuth, author of the
epochal book The Art of Computer Programming (1968-
2025) and of the TeX editing system, had in 1984 already
published an article with the equivocal title Literate Pro-
gramming that proposed writing source code from the
outset so that it contained more than the commands of
its respective programming language.3® As an alternative,
he called for a meta-level in which developers included
in-depth description of and commentary on the individual
commands. The source code would then comprise not
only the individual commands and data structure, but also
document the same. In this way, algorithms would be and
remain transparent—not only for their authors, but also
for readers and developers who came after (see listing 3 on
p. 10 and listing 4 on p. 12). It is hardly worth mentioning
that this paradigm is not applied in the daily routine of
professional software developers.

In the meantime, however, a comparable practice has
been established elsewhere that effectively interweaves
executable code and commentary, namely in the form
of the so-called Jupyter Notebooks, an open-source plat-
form whose format has been developed for the interactive
and collaborative analysis of measurement data. Crucially,
measurement data and their processing are framed by ex-
planations, metadata, and contextualizations that con-
tribute as so-called Jupyter Narratives to the understand-
ing of the respective analysis steps.® The code cannot do
without supplementary explanatory material if it is to re-
main collaboratively comprehensible. A very similar form

26 Krajewski, ‘Against the Power of Algorithms. Closing, Literate Programming, and Source Code Critique’ (n 14).

27 Matthew Kirschenbaum, Hello Worlds. Why humanities students should learn to program (The Chronicle of Higher Education, 2009); Matthew
Kirschenbaum, ‘What Is Digital Humanities and What'’s It Doing in English Departments?’ (2010) 47(150) ADE Bulletin 55.
28 Stephen Ramsay, Reading machines. Toward an algorithmic criticism (Topics in the digital humanities, University of Illinois Press 2011).

29 Lev Manovich, Software takes command (International texts in critical media aesthetics, vol 5, Bloomsbury 2013).

30 Nick Montfort, Exploratory programming for the arts and humanities (The MIT Press 2016).

31 See also Geoff Cox and Christopher Alex McLean, Speaking code. Coding as aesthetic and political expression (Software studies, The MIT Press 2013);
David M Berry and Anders Fagerjord, Digital Humanities. Knowledge and Critique in a Digital Age (Polity Press 2017); Daniel Punday, Computing as
Writing (University of Minnesota Press 2015); Mark C Marino, Critical Code Studies (Published: electronicbookreview.com, electronic book review, April
2006); Mark C Marino, Critical Code Studies and the electronic book review: An Introduction (Published: electronicbookreview.com, electronic book
review, 2010).

32 Mark C Marino, ‘Reading exquisite_code’ in NKatherine Hayles and Jessica Pressman (eds), Comparative textual media. Transforming the humanities
in the postprint era (Electronic mediations, University of Minnesota Press 2013) vol 42.

33 Mark C Marino, Critical code studies (Software studies, The MIT Press 2020) 161-197.

34 Asone example: Franco Moretti, Distant reading (Verso 2013).

35 Donald E Knuth, ‘Literate Programming’ (1984) 27 The Computer Journal 97.

36 Brian Granger and Fernando Pérez, Jupyter: Thinking and Storytelling with Code and Data (Published: /www.authorea.com, Authorea, 2021) 4.

CRCL volume 1 issue 3

2025

private void calculateSequence() {

this.setCursor(Cursor.getPredefinedCursor(Cursor.WAIT_CURSOR));

clearResults();

for (int i =1; i < jSliderl.getModel().getValue(); i++) {

if (recursively.isSelected()) {

Results.append("In generation " +i+ " there are " + fibo(i) + " rabbits.\n");

} else {

Results.append('In generation " +1i+ " there are " + fiboWithoutRecursion(i) + " rabbits.\n");

this.setCursor(Cursor.getDefaultCursor());

private long fibo(int n) {

if (n<=1) {
return n;
} else {

return fibo(n - 1) + fibo(n - 2);

Listing 3: A recursion generating Fibonacci numbers and its explanation

10

https://github.com/nachsommer/sourcecodecriticism/blob/main/JFramingFibonacci.java

CRCL volume 1 issue 3

2025

can be found in Australian legal practice where, within the
framework of legislative procedures and regulatory instru-
ments, the process of creating the law is also documented
with additional explanatory material (elucidating its ori-
gins, reasons and forms of the law to be enacted) in order
to serve as an aid both for the subsequent application of
the laws and their critical scholarly monitoring.

Literature, law, code, and their criticism are structurally
closer than it might at first seem. Just as the cultural tech-
nique of reading at an academic level allows the reader to
lay bare the manner in which the text was constructed: its
rhetoric, its production of affect, its style, and its literary
figures of thought, coding literacy can empower practi-
tioners because they would no longer need be subject to
algorithmic structures and the dependencies created by
software, but would be able to open the black box called
“code” and reveal the way in which the algorithm was de-
veloped.?” Such readings include questions of the con-
struction and the poetics of algorithms. There are many
paths to solving digital problems. Some of them are as
monotonous as a twelve-lane highway crossing Califor-
nia’s San Francisco Bay, some have the exploratory poten-
tial of the country lane in Arno Schmidt’s Bottom’s Dream,
and some rare roads are even like the one still to be found
in Knut Hamsun’s The Growth of the Soil, nothing but a
path leading into the wilderness to transform it into a civi-
lized future. In short, in the classification and hermeneutic
reading of code, it is key to also investigate intentions,
formulations, and questions of style. For in order to rec-
ognize how users are used by software, it is necessary to
decode the construction and design of algorithms and be
able to subject them to critical reflection. This process of
the critical reflection of algorithms and the corresponding
dedication to coding literacy in the humanities at the most
basic level of the code is, in a nutshell, what “source code

criticism” entails.38

This novel method brings together classic scholarship and
historical source code analysis, linking a careful examina-
tion and preparation of the material,?® in this case algo-
rithms, with a theoretically grounded reading that includes
critical commentary of program structures and aims for
practical functionality. Conceptually, this approach in-
cludes on the one hand making source code available in
open access repositories such as GitHub or, more compli-
cated, through processes such as decompiling or reverse
engineering. Further, source code criticism entails the
critical reading of code, which, in its dynamic transforma-
tions, can be treated like historical sources that, not least

4

because of their many versions,*° require classification

and commentary.

The power of commentary

Commentary is a particularly central medial practice of
programming as a cultural technique. From its classic
application in theological exegesis and in legal practice
since late Antiquity, commentary has been used to hold
up, determine, and vindicate text. Whether the law is re-
ligious or judicial, commentary keeps it from becoming
inert or incomprehensible; it keeps arguments fluid by un-
derlining particular statements and bringing others into
the discourse.?! Commentary has a similar function in
philological text analysis, in the creation of critical edi-
tions, and in critique génétique.*? It points out where the
text is unclear or ambiguous, where there are variations
or deletions in the original, and so makes transparent the
genesis and construction of the text. And, finally, the ne-

cessity of commentary can be seen in the context of digital

37 Annette Vee, Coding literacy. How computer programming is changing writing (Software studies, The MIT Press 2017).

38 Krajewski, ‘Hilfe fiir die digitale Hilfswissenschaft. Von den Digital Humanities verspricht man sich wahre Wunder, obwohl sie nur eine einfache
Hilfswissenschaft sind’ (n 2).

39 Daniela Saxer, Die Schéirfung des Quellenblicks. Forschungspraktiken in der Geschichtswissenschaft 1840-1914 (De Gruyter Oldenbourg 2014) 376 ff.
40 See Markus Krajewski, Versionskontrolle (Repositories of Markus Krajewski, githubcom/nachsommer 2020); Markus Krajewski, ‘branch, diff, merge.
Versionskontrolle und Quellcodekritik’ in J6rg Paulus, Andrea Hiibener, and Fabian Winter (eds), Duplikat, Abschrift & Kopie. Kulturtechniken der
Vervielfiltigung (Bohlau Verlag 2020).

41 yvismann and Krajewski (n 4) p.102; Krajewski and Vismann (n 15) 5-9.

42 Gérard Genette, Paratexte. Das Buch vom Beiwerk des Buches (Campus Verlag 1992); Almuth Grésillon, Literarische Handschriften. Einfiihrung in die
critique génétique (Peter Lang Verlag 1999).

11

https://github.com

CRCL volume 1 issue 3

2025

Listing 4: A Very Brief Example of Source Code Criticism

239
240

241
242
243
244
245
246
247
248
249

250
251
252
2!

a
@

254
255
256
257

258

259

260

261

262

263
264

265

266

/* How to get surprised by your digital assistant?

Computers don't do well with true randomness (Rubin 2011). Therefore, the machine, for example, can't provide a
truly random card from a collection of index cards. Below, we explore four ways in which surprise can be
implemented, based on historic examples of designing serendipity...”/

public int getRandomInt(int max) {
/* This method selects a pseudo-random card from the card index collection.
It takes 'int max' as input, indicating the collection's current amount of cards. ™/
// The number to be determined will be chosen from a range between max and this minimal value
int min = 1;
// JAVA can now create a pseudo-random integer by this new object:
Random randomGenerator = new Random();
// With the result of randomGenerator this method then returns an 'accidentally’ chosen number between 1
and the max amount of cards:
return randomGenerator.nextInt(max - min) + min;

}

// Inform the user directly about Mallarmé (1992) and his coup de dés:
System.out.printIn("The dice roll ended at " + getRandomInt(JSynapsen.recAnz));

/* Implementing serendipity with Aby Warburg

Since serendipity is even more difficult to implement and at the same time still a young field in information
science (McCay-Peet and Toms 2017), we create another unfolding opportunity for ‘controlled coincidence’ by
bringing Aby Warburg's ‘law of the good neighbour’ to bear (see Krajewski 2017, pp. 99-101): Since 1924, library
staff Gertrude Bing and Fritz Saxl, in the Kulturwissenschaftlichen Bibliothek Warburg (K.W.B.) in Hamburg
and later in London, set aside similar texts and corresponding thoughts for a given book by constantly
rearranging the shelves, thus creating new spatial connections for a book, transforming the previously remote into
propinquity through establishing short distances. This creates new links between heterogeneous units of text in
close proximity, which can be explored by the reader with the confidence that a knowledgeable hand has curated
the surrounding texts half by chance, half intentionally. We simulate this knowledgeable hand by computing
similarities between texts in three different ways:

1. by the number of matching terms with which the texts are tagged. The highest match leads to the greatest
spatial proximity.

2. by matching the full texts. The entire content of a book is examined with all other full texts for word matches
and assigned a characteristic value. Again, the texts with the highest similarities move close together.

3. by an analysis of the quotations in the book. The texts that are cited in the selected book and are also present in
the local database are included in the neighborhood, the highest citation frequency determines the closest
proximity.

The respective neighborhoods of the selected text can then be illustrated in the form of a sociograph in the
diagram. ™/

public String[] generateGoodNeighboursByHeadwords(string keyword) {
/* First we retrieve a list of headwords from the database associated with this card, identified by its
keyword like “warburg:1924” [...] This method returns a String array with a list of keyword, representing
the neighbourhood of the chosen card. */
System.reader.printIn("... This code continues and can soon be followed at
github.com/nachsommer/interlocutor ...");

12

CRCL volume 1 issue 3

2025

philology, which applies the methods of philology to soft-
3

ware.?
In this context, where programming has become a new
and innovative form of cultural technique, commentary
comprises all of these functions. Yet the method goes one
decisive step further to allow commentary its entire epis-
temic range. One of the greatest epistemic attributes of
commentary lies in the systematic transition between lev-
els. There is always a slight gap between text and com-
mentary. Crossing this gap causes an automatic shift in
perspective, combined with the necessarily distanced view
from the level of commentary upon the object of analy-
sis, whether literary text or code. This shift in perspective
includes a moment of self-reflection, in which the com-
mentary privileges a critical examination of the practice
or process of writing. By systematically moving between
levels, commentary creates an epistemic lever that allows a
continuously oscillating perspective on what is written and
as such represents an underexploited epistemological in-
strument. For commentary always acts as the unassuming
assistant of reflection, inviting and provoking explanation
and plausibilization, exegesis, and links to other texts. The
concept of source code criticism uses this oscillating per-
spective, between operative and explanatory segments, to
make the code’s commentary into the true text.

The fundamental distinction between code and commen-
tary also resonates with the difference between produc-
tion and execution of rules in the juridical realm which
Laurence Diver discusses in his brilliant paper on compu-
tational legalism.** As one strategy on how to overcome
this gulf Diver advocates for analysing code as text, i.e.
considering code as an alterable document rather than
something unchangeable as it is given in the “ruleishness”
of the legalism paradigm wherein subjecting to the code
as law seems inevitable.*>

The method of source code criticism hence implies two

things: on the pragmatic level, that software should not

only be executed, but also at times subject to a system-
atic critical reading, making its algorithms understandable
and plausible by means of explanations, reflections, ref-
erences, and if necessary, modifications. The aim of this
method is however not just transparency and intelligibility
for the sake of didactics alone, but an understanding of
program structures to improve coding literacy. Secondly,
on the epistemic level, which in turn goes far beyond the
effects intended by by Knuth'’s (1974) principle of Literate
Programming, the method aims, by means of extensive
commentary, to narrativise, historicise, and discursivise
code. In a nutshell: the continuous commentary within the
code should become the true text, which means nothing
other than writing code as history (as indicated in listing 3).
In summary, we are talking about developing a model of
source criticism for the twenty-first century and aim to
achieve nothing less than setting a new standard for writ-

ing code in the humanities.

Accordingly, and not unimportantly, this understanding of
code possesses emancipatory potential. Source code criti-
cism means coding literacy at a level that enables reflection
on power structures in digital societies. Programming as
a cultural technique empowers scholars to understand,
classify, and consequently also write code, taking back a
certain agency in light of the current power of information
technologies.

An earlier version of this text was translated from the
German by Laura Radosh.

References

AlgorithmWatch, Automating Society Report 2019 (2019).

Alpaydin E, Machine learning. The new AI (MIT Press es-
sential knowledge, The MIT Press 2016).

Bajohr H, ‘Algorithmic Empathy: Toward a Critique of Aes-
thetic A’ (2022) 30(2) Configurations 203.

43 See, e.g., Moritz Hiller, ‘Diskurs/Signal (I). Prolegomena zu einer Philologie digitaler Quelltexte’ (2014) 28 editio Internationales Jahrbuch fiir Edi-

tionswissenschaft 192; Thorsten Ries, ‘ “die gerite kliiger als ihre besitzer”: Philologische Durchblicke hinter die Graphical User Interface. Uberlegungen

”)

zur digitalen Quellenphilologie, Studie zu Michael Speiers “ausfahrt st. nazaire”’ (2010) 24 Editio Internationales Jahrbuch fiir Editionswissenschaft 149;

Montfort (n 30) as well as the the digital archival projects at the Deutsches Literaturarchiv Marbach.

44 Laurence Diver, Interpreting the Rule(s) of Code: Performance, Performativity, and Production (Published: law.mit.edu, MIT Computational Law

Report, 2021).
45 jbid.

13

https://www.dla-marbach.de/en/weitere-seiten/preservation-of-holdings/digital-preservationof-holdings

CRCL volume 1 issue 3

2025

Berry DM and Fagerjord A, Digital Humanities. Knowledge
and Critique in a Digital Age (Polity Press 2017).

Brown TB and others, Language Models are Few-Shot
Learners (Published: arxiv.org, arXivorg, May 2020).

Burnett DG, Trying Leviathan. The nineteenth-century New
York court case that put the whale on trial and chal-
lenged the order of nature (Princeton University Press
2007).

Cox G and McLean CA, Speaking code. Coding as aesthetic
and political expression (Software studies, The MIT
Press 2013).

De Mulder W and others, ‘Are Judges More Transpar-
ent Than Black Boxes? A Scheme to Improve Judicial
Decision-Making by Establishing a Relationship with
Mathematical Function Maximization’ (2021) 84(3)
Law and Contemporary Problems 47.

Diver L, Interpreting the Rule(s) of Code: Performance, Per-
formativity, and Production (Published: law.mit.edu,
MIT Computational Law Report, 2021).

Domingos P, The master algorithm. How the quest for the
ultimate learning machine will remake our world (Ba-
sic Books 2015).

E Gamma and others (eds), Design patterns. Elements of
reusable object-oriented software (Addison-Wesley pro-
fessional computing series, Addison-Wesley 1995).

Genette G, Paratexte. Das Buch vom Beiwerk des Buches
(Campus Verlag 1992).

Granger B and Pérez F, Jupyter: Thinking and Storytelling
with Code and Data (Published: /www.authorea.com,
Authorea, 2021).

Gregory CN, ‘Bentham and the Codifiers’ (1900) 13(5) Har-
vard Law Review 344.

Grésillon A, Literarische Handschriften. Einfiihrung in die
critique génétique (Peter Lang Verlag 1999).

Hilgers Pv, ‘Urspriinge der Black Box’ in A Ofak and P von
Hilgers (eds), Rekursionen. Von Faltungen des Wissens
(Wilhelm Fink Verlag 2010).

Hiller M, ‘Diskurs/Signal (II). Prolegomena zu einer
Philologie digitaler Quelltexte’ (2014) 28 editio Interna-
tionales Jahrbuch fiir Editionswissenschaft 192.

Kirschenbaum M, Hello Worlds. Why humanities students
should learn to program (The Chronicle of Higher Edu-
cation, 2009).

— ‘What Is Digital Humanities and What’s It Doing in En-
glish Departments?’ (2010) 47(150) ADE Bulletin 55.

Knuth DE, ‘Computer Programming as an Art’ (1974)
17(12) Communications of the ACM 667.

— ‘Literate Programming’ (1984) 27 The Computer Jour-
nal 97.

Krajewski M, ‘Against the Power of Algorithms. Closing, Lit-
erate Programming, and Source Code Critique’ (2019)
23 Law Text Culture 119.

— ‘Hilfe fiir die digitale Hilfswissenschaft. Von den Dig-
ital Humanities verspricht man sich wahre Wunder,
obwohl sie nur eine einfache Hilfswissenschaft sind’
[2019] (85) Frankfurter Allgemeine Zeitung N4.

— ‘branch, diff, merge. Versionskontrolle und Quell-
codekritik’, in J Paulus, A Hiibener, and F Winter
(eds), Duplikat, Abschrift & Kopie. Kulturtechniken der
Vervielfiltigung (Bohlau Verlag 2020).

— Versionskontrolle (Repositories of Markus Krajewski,
githubcom/nachsommer 2020).

Krajewski M and Vismann C, ‘Kommentar, Code und
Kodifikation’ (2009) Frithjahr 2009 Zeitschrift fiir
Ideengeschichte 5.

Krysa] and Sedek G, ‘Source Code’ in M Fuller (ed), Soft-
ware studies. A lexicon (The MIT Press 2008).

Lanza E, Who Painted Rembrandt? Copyright and Au-
thorship of Two Rembrandt Portraits (Published:
www.thelegalpalette.com, The Legal Palette, 2018).

Lessig L, Code. Version 2.0 (2. Auflage, Basic Books 2006).

Manovich L, Software takes command (International texts
in critical media aesthetics, vol 5, Bloomsbury 2013).

] Mansfeld (ed), Die Vorsokratiker. Griechisch / Deutsch
(Erw. Neuausg., Nachdruck Auflage, Philipp Reclam
jun 2012).

Marino MC, Critical Code Studies (Published: electronic-
bookreview.com, electronic book review, April 2006).

— Critical Code Studies and the electronic book review: An
Introduction (Published: electronicbookreview.com,
electronic book review, 2010).

— ‘Reading exquisite_code’, in NK Hayles and J Press-
man (eds), Comparative textual media. Transforming
the humanities in the postprint era (Electronic media-
tions, University of Minnesota Press 2013) vol 42.

— Critical code studies (Software studies, The MIT Press
2020).

McCulloch W, ‘Recollections of the Many Sources of Cy-
bernetics’ (1974) 6(2) ASC Forum.

Mitchell JC, Concepts in programming languages (Cam-
bridge University Press 2004).

14

CRCL volume 1 issue 3

2025

Montfort N, Exploratory programming for the arts and hu-
manities (The MIT Press 2016).

Moretti F, Distant reading (Verso 2013).

Pasquale F, The Black box society. The secret algorithms
that control money and information (Harvard Univer-
sity Press 2016).

Passig K, ‘Fiinfzig Jahre Black Box’ (2017) 71(823) Merkur
Deutsche Zeitschrift fiir europdisches Denken 16.

Pisano L, Il liber abbaci. Pubbl. da Baldassarre Bon-
compagni (Pisano: Scritti, vol 1, Tipogr delle Scienze
Matematiche e Fisiche 1857).

Punday D, Computing as Writing (University of Minnesota
Press 2015).

Pynchon T, Gravity’s Rainbow (Bantam Books 1974).

Ramsay S, Reading machines. Toward an algorithmic crit-
icism (Topics in the digital humanities, University of
Illinois Press 2011).

Ries T, ‘“die gerédte kliiger als ihre besitzer”: Philologis-
che Durchblicke hinter die Graphical User Interface.
Uberlegungen zur digitalen Quellenphilologie, Studie
zu Michael Speiers “ausfahrt st. nazaire”’ (2010) 24 Edi-
tio Internationales Jahrbuch fiir Editionswissenschaft
149.

W Samek and others (eds), Explainable Al: Interpreting, Ex-
plaining and Visualizing Deep Learning (Lecture Notes
in Artificial Intelligence, vol 11700, Springer Interna-
tional Publishing 2019).

Saxer D, Die Schérfung des Quellenblicks. Forschungsprak-
tiken in der Geschichtswissenschaft 1840-1914 (De
Gruyter Oldenbourg 2014).

Schiittpelz E, ‘Die medienanthropologische Kehre der Kul-
turtechniken’ (2006) 6 Archiv fiir Mediengeschichte 87.

Siegert B, ‘Cultural Techniques: Or the End of the Intellec-
tual Postwar Era in German Media Theory’ (2013) 30(6)
Theory, Culture & Society 48.

— Cultural Techniques: Grids, Filters, Doors, and other Ar-
ticulations of the Real (Winthrop-Young G ed, Fordham
University Press 2015).

Sudeall L and Pasciuti D, ‘Praxis and Paradox: Inside the
Black Box of Eviction Court’ (2021) 74(5) Vanderbilt
Law Review 1365.

Vee A, Coding literacy. How computer programming is
changing writing (Software studies, The MIT Press
2017).

Vismann C and Krajewski M, ‘Computer-Juridisms’ (2007)
8(29) Grey Room Architecture, Art, Media, Politics 90.

Winthrop-Young G, Friedrich Kittler zur Einfiihrung (Ju-
nius Verlag 2005).

— ‘The Kultur of Cultural Techniques. Conceptual Inertia
and the Parasitic Materialities of Ontologization’ (2014)
10(3) Cultural Politics 376.

— ‘Discourse, Media, Cultural Techniques: The Complex-
ity of Kittler’ (2015) 130(3) Moden Language Notes 447.

— ‘Siren Recursions’, in S Sale and L Salisbury (eds), Kit-
tler Now: Current Perspectives in Kittler Studies (Polity
Press 2015).

— ‘The Kittler Effect’ (2017) 44(132) New German Critique
205.

Wright M, Baughman SB, and Robertson C, ‘Inside the
Black Box of Prosecutor Discretion’ (2022) 55 UC Davis
Law Review 2133.

15

CRCL volume 1 issue 3

2025

A reply: to Markus Krajewski, “Source Code Criticism:
On Programming as a Cultural Technique and its Judicial

Linkages”

Katja de Vries * Senior Lecturer/Associate Professor, Uppsala University, Sweden.

katja.devries@jur.uu.se

Texts have an origin and a destination. Texts act, do things,
affect. When a text cannot be read any longer, the text be-
comes a dead letter. Sometimes texts do completely other
things than their author intended*®. As Roland Barthes
(1967) famously wrote, the author is dead. Sometimes the
author is a diffuse origin that has little to do with the 18™
century romantic notion of individual creative genius; and
the reader is a nonhuman entity. A DNA sequence is a text
that, after being translated into messenger RNA, can be
read by ribosomes as building instructions. Who is the
author of the DNA text? Richard Dawkin’s (1986) blind
watchmaker?

In his brilliant paper ‘Source Code Criticism’ Krajewski
writes about the role of commentaries in relation to three
types of texts: literature, software and law. In literature and
law there is an extensive tradition of commentaries that
remove the “veil of opacity” (p. 3) and increases readability.
Both law and software are texts that will often be difficult to
read for a human reader. In the 11" century Roman legal
texts that had been ‘dead’ for many centuries were made
readable, and thus ‘revived’ into a living legal tradition, by
glossators who wrote commentaries in the side lines of the
actual texts.

Building on Knuth’s Literate Programming (1984) and
modern applications such as Jupyter Notebooks, where
developers can annotate their code with human-readable
narrative and explanations, Krajewski proposes a more
elaborate form of commentary on software code, “source
code criticism”. It should be underlined that this is some-
thing more far reaching than the commentaries of me-

dieval glossators making Roman Law accessible and ac-
tionable for use. Krajewski’s proposal is to create a new
type of profession: code critics producing software com-
mentaries in the tradition of critical humanities and en-
lightenment ideals of criticism, deconstruction, historiza-
tion and discursivization to enhance digital literacy and
agency.

In “listing 4” Krajewski exemplifies how such a critical
commentary could look like. This commentary on a piece
code that mimics the randomness of picking a card from a
deck, not only explains the meaning of the different bits of
code but is also a well referenced piece of academic work
on the history of serendipity and randomness, and its liter-
ary reverberations. It is a beautiful piece of text that I have
printed, framed and put on my wall as a textual work of art.
While “listing 3” also provides a historicizing explanation
(of which it is unclear to me if it would qualify as a basic
form of source code criticism or not), it is clear that “listing

4” truly epitomizes the genre.

However, the question is if source code criticism can be
more than beautiful scholarly work and a piece of textual
art, and potentially provide an answer to the problematic
opacity of artificial intelligence (AI) models, as Krajewski
seems to suggest.

The world is increasingly populated by Al-fuelled systems.
Transparency and interpretability, have been posited as
the panacea against becoming subjected to the algorith-
mic opacity (“computer says no”) and the unaccountability
and uncontrollability (the sorcerer’s apprentice) of such sys-

46 Katja de Vries, ‘GDPR as Hermeneutics’ in Common Erasures : Speaking back to GDPR (ETHOS Lab 2020).

16

mailto:katja.devries@jur.uu.se
mailto:katja.devries@jur.uu.se

CRCL volume 1 issue 3

2025

tems. However, transparency and interpretability are never
goals in themselves, and when operationalizing them the
question should always be: for whom and for what pur-
pose?*” Is it to empower a consumer, to inform a judge in a
liability case, to make a manufacturer more self-reflective,
or to motivate a decision towards a citizen?

To understand transparency in relation to Al-fuelled sys-
tems there are two ways of approaching them: either as
texts or as organisms.

Let’s start by looking at both law and software, in line with
Krajewski’s proposal, as texts. What are their parallels and

divergences in terms of origin and destination?

In terms of authorship there is an interesting parallel be-
tween those writing legal texts and software: there is a
certain impersonality, or as Savigny said in relation to the
Roman jurists: “fungibility”#, in the authorship of legal
commentaries that also exists in those writing software
code. Their output is more akin to a contribution to a grow-
ing coral reef than an individual literary work. Schiavone
describes Roman jurists as having “a common awareness
(...) that they were participating, with their own intelli-
gence, decision after decision, writing after writing, in the
collective formation of a grand ontological architecture.”*?
When looking at the software that makes, for example, a
contemporary mobile phone tick the biggest part of the
software is no longer attributable to an individual author
but is an accumulation of code that has undergone several
cycles of being open-sourced and closed, and is consti-
tuted of endless adaptations, over-writings, and cuts-and-
pastes.

However, when comparing legal texts with software code
created using Al, that is machine learning (ML), methods,
it is clear that the authorship of the latter is more indirect:
an algorithm that creates a model from training data can
be surprising or opaque to its developer in a way that a le-
gal text would not. The origin of ML software is somewhere
in between intentional human creation and evolutionary

emergence.

In terms of readership there is also a clear divergence. The
legal text always addresses a human reader. The totality
of the system of Law is a legal fiction that only exists in
its enactment by human lawyers, who put their legal cre-
ativity to work to construct arguments as to why the Law
says one thing or another.’° The law exists in its activa-
tion in legal narratives created by legal practitioners. In
contrast, the primary addressee of software code is always
a machine (or, to put it more precisely, the compiler that
translates the code into binary executable code). The text
works if the machine works. What is created is a system —
or: a machinic organism - that can do something. Human

understanding is important but secondary.

Transparency in relation to Al-systems as texts, that can
be critically commented upon, is an Enlightenment dream
from the era of books. Nobody can be against more digital
literacy, and source code criticism can contribute to that,
but Al-systems also need to be made transparent in a more
actionable way: as organisms that can be challenged in

interaction, counter-proﬁledsl, and questioned.

References

Hildebrandt M, Smart Technologies and the End(s) of Law.
Novel entanglements of Law and Technology (Paper-
back edition, Edward Elgar 2015).

Knuth DE, ‘Literate Programming’ (1984) 27 The Computer
Journal 97.

Latour B, The making of law: An ethnography of the Conseil
d’Etat (Polity 2010).

Schiavone A, The Invention of Law in the West (Belknap
Press 2012).

Vries K de, ‘GDPR as Hermeneutics' in Common Erasures :
Speaking back to GDPR (ETHOS Lab 2020).

— ‘Transparent Dreams (Are Made of This) : Counterfac-
tuals as Transparency Tools in ADM’ (2021) 8(1) Critical
Analysis of Law.

47 Katja de Vries, ‘Transparent Dreams (Are Made of This) : Counterfactuals as Transparency Tools in ADM’ (2021) 8(1) Critical Analysis of Law.

48 Aldo Schiavone, The Invention of Law in the West (Belknap Press 2012) 8.

49 ibid.

50 Bruno Latour, The making of law: An ethnography of the Conseil d’Etat (Polity 2010).
51 Mireille Hildebrandt, Smart Technologies and the End(s) of Law. Novel entanglements of Law and Technology (Paperback edition, Edward Elgar 2015).

17

CRCL volume 1 issue 3

2025

Author’s reponse

Markus Krajewski

I am much grateful to Katja de Vries’s inspiring comments
on my approach on commenting code. I feel well un-
derstood. I'd like to comment her comments with three
questions, in order to continue the lines of thoughts. Not
being a legal scholar I prefer to comment on the coding
part rather than on the law concepts.

Who writes code? (As a reply to who writes
law?)

Today, most of the code emerges as the effect of an inter-
play between one or more human authors, a vast collec-
tion of scripts which already exist and may have solved
the questions at stake, and a specific writing environment
(IDE) which offers help in researching documentation, ex-
amples of code snippets by others, as well as providing
standard solutions generated by large language models
(such as github Co-Pilot). The fact that in most of these
processes a human author is still involved, and the fact that
most of the code is written in - more or less - common En-
glish may serve as two indications that their development
and algorithms as such are to be considered a social arti-
fact. So, algorithms in most cased address humans rather
than machines, in order to be traceable, understandable,
and alterable. Otherwise algorithms could be written yet
in Assembler or other arcane code (like the programming
language ‘brainfuck’ which is so minimalistic that it aims
at not being understandable at all). Considering these con-
ditions of sofware production, it seems all the more urgent
to keep the algorithms - which always already aim to a
certain extent at humans - as transparent as possible at the
source code level.

Whom to blame?

In software development authors usually hide behind
pseudonyms. As a part of a large, world-wide distributed
community working on a specific code project like github,
one communicates with a whole zoo of strange creatures,

rarely announcing their real names, instead bearing awk-

ward signifiers like ‘commanderkotori’ or ‘jesuschrist’,
framed by generic profile icons. So who can be made re-
sponsible for a certain change of a line of code, who can
be contacted if the author is opaque, not graspable since
he/she/it (if ‘it’ is a bot) seems to be a secluded entity,
hidden behind many veils. Shortly after its introduction,
the git program which handles the versioning of widely
distributed software developers’ contributions, offered a
specific function called ‘git blame’ which allows to iden-
tify an author who made a certain change to the collec-
tive code in order to reach out to him/her to discuss the
change. With this feature, at least one veil of the differ-
ent layers wrapped around a person’s identity is removed
and one can enter into a discussion with the responsible
person. This adds, again, another social component to
the entangled interplay between code and human actions
in developing algorithms. And it undergirds the need to
write the code already not only for the machine, but also
for others to be able to grasp it. Otherwise, the coder will
frequently get ‘blamed’,

Why is Source Code Criticism rather technology than
art?

Based on the two levels of meaning of the Greek term texne
(art and technique), SCC aims at both levels equally: It is
artin the closest connection with technology, or conversely
an artful technique that helps to keep the path to under-
standing code and also Al open in particular. Al systems,
however obscure and incomprehensible the large models
may seem to even their developers and experts, are also
built with computer science techniques, i.e. the scripts
and blueprints are available as source codes that can be
dealt with using the same methods of SCC which, thus,
adds to the just emerging field of Critical AI Studies. To
the extent that not only the algorithms but also the scripts
for building the LLMs as well as an assessment of the un-
derlying data sets are subject to criticism, the black box
commonly called Al might lose its darkness. In this sense,
; also attempts to conduct a kind of educational program

18

CRCL volume 1 issue 3 2025

against human immaturity in their relation to machines on
a very pragmatic, neither artificial nor artistic level.

19

	Obscure acts
	Seeing through the Schwarzgerät
	Translation
	Streams
	Tiers

	The remedy: source code criticism
	The power of commentary
	Reply
	Response
	Who writes code? (As a reply to who writes law?)
	Whom to blame?
	Why is Source Code Criticism rather technology than art?

